Acta Cryst. (1996). B52, 110-121

Hydrogen Bonding in *a*-Ferrocenyl Alcohols: Structures of 1-Ferrocenylethanol, 1-Ferrocenyl-2-phenylethanol, 1-Ferrocenyl-1-phenylpropan-1-ol, 1-Ferrocenyl-1-phenyl-2methylpropan-1-ol, 1-Ferrocenyl-1-phenyl-2,2-dimethylpropan-1-ol, 1-Ferrocenyl-1,2-diphenylethanol and Diferrocenyl(phenyl)methanol

CHRISTOPHER GLIDEWELL,^a RENATE B. KLAR,^a Philip Lightfoot,^a Choudhury M. Zakaria^a and George Ferguson^b

^aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, and ^bDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received 20 February 1995; accepted 7 June 1995)

Abstract

The structure of 1-ferrocenylethanol (1a), $C_{12}H_{14}FeO$, tetragonal, $I4_1cd$, a = 23.3334(18), c = 7.7186(11)Å, Z = 16, R = 0.025 for 850 observations $[I > 3\sigma(I)]$, contains spiral chains generated by a 41 axis, in which the molecules are connected by $O-H \cdots O$ hydrogen bonds in a motif with graph set C(2) with an $O \cdots O$ distance of 2.724(3)Å. 1-Ferrocenyl-2-phenylethanol (1f), $C_{18}H_{18}$ FeO, orthorhombic, *Pnaa*, a = 9.8589(7), b = 15.2800(17), c = 19.1399(17)Å, Z = 8, R = 0.036for 1508 observations $[I > 3\sigma(I)]$, crystallizes as dimeric aggregates lying across a crystallographic twofold axis and held together by $O-H \cdot \cdot O$ hydrogen bonds in a motif with graph set $R_2^2(4)$ with an $O \cdots O$ distance of 2.868(8) Å; there are also intramolecular $O - H \cdot \cdot \pi(C_5H_5)$ interactions. 1-Ferrocenyl-1-phenylpropan-1-ol (2b), $C_{19}H_{20}FeO$, monoclinic, $P2_1/c$, a = 10.2443(13), $\tilde{b} = 10.5811(17),$ c =14.2487 (12) Å, $\beta = 100.190 (9)^{\circ}$, Z = 4, R = 0.029for 2289 observations $[I > 3\sigma(I)]$, crystallizes as isolated molecules containing $O - H \cdot \cdot \pi(C_5H_5)$ interactions. In 1-ferrocenyl-1-phenyl-2-methylpropan-1-ol (2c), $C_{20}H_{22}FeO$, monoclinic, Cc, a = 25.387 (4), b = 7.6825 (6), c = 17.803 (3)Å, $\beta = 108.217$ (17)°, Z = 8, R = 0.022 for 3286 observations $[I > 3\sigma(I)]$, there are two molecules in the asymmetric unit, but the structure consists of isolated molecules containing $O-H \cdot \cdot \pi(C_5H_5)$ interactions. 1-Ferrocenyl-1-phenyl-2,2-dimethylpropan-1-ol (2d), C₂₁H₂₄FeO, monoclinic, $P2_1/n, a = 8.007(4), b = 13.002(2), c = 66.24(1)\text{ Å},$ $\beta = 91.96(3)^{\circ}$, Z = 16, R = 0.072 for 4130 observations $[I > 3\sigma(I)]$, has four molecules in the asymmetric unit, but there is no intermolecular hydrogen bonding. The structure of 1-ferrocenyl-1,2-diphenylethanol (2f), C₂₄H₂₂FeO, monoclinic, C2/c, a = 26.229(2), $b = 5.889(2), \quad c = 24.553(2) \text{ Å}, \quad \beta = 104.114(11)^{\circ},$ Z = 8, R = 0.036 for 1733 observations $[I > 2.5\sigma(I)]$, consists of isolated molecules in which the hydroxyl H atom is disordered unequally over three sites, each of which is *trans* to one of the C-C bonds involving C1; H atoms in two of these sites are involved in

intramolecular O—H··· $\pi(C_5H_5)$ interactions and the H atom in the third is involved in an O—H··· π (arene) interaction. The structure of diferrocenyl(phenyl)methanol (2g), C₂₇H₂₄Fe₂O, triclinic, $P\bar{1}$, a = 9.3999 (11), b = 11.1988 (16), c = 11.9720 (16)Å, $\alpha = 117.844$ (11), $\beta = 98.890$ (10), $\gamma = 102.362$ (11)°, Z = 2, R = 0.031for 3435 observations $[I > 2.5\sigma(I)]$, consists of centrosymmetric dimers held together by O—H···O hydrogen bonds in a motif with graph set R_2^2 (4) with an O···O distance of 2.926 (4)Å; there are also intramolecular O—H··· π (C₅H₅) interactions. Closed dimers containing the R_2^2 (4) (OH)₂ hydrogen-bonding motif, while unknown for purely organic alcohols, are a common occurrence in α -ferrocenyl alcohols (five examples from 13 known structures).

1. Introduction

Simple, unfunctionalized monoalcohols ROH can exhibit an extremely wide range of intermolecular aggregation patterns in the solid state. Hydrogen bonding of the type $O-H \cdots O$ can lead to finite aggregates which are dimeric (Sgarabotto, Ugozzoli, Sorriso & Malarski, 1988a), trimeric (Karlsson, 1976; Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995), tetrameric (Sultanov, Shnulin & Mamedov, 1985; Sgarabotto, Ugozzoli, Sorriso & Malarski, 1988b; Ferguson, Gallagher, Glidewell, Low & Scrimgeour, 1992; Ferguson, Glidewell & Zakaria, 1994) or hexameric (Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995). Such $O - H \cdot \cdot \cdot O$ hydrogen bonding can also lead to the formation of extended chains generated by crystallographic screw axes (Gupta & Gupta, 1975; McMillan, Paul, Caccamese & Rinehart, 1976; Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995). Other modes of aggregation involve hydrogen bonding of the types O-H. F (DesMarteau, Xu & Witz, 1992) or $O-H \cdots \pi$ (arene) (Ferguson, Gallagher, Glidewell & Zakaria, 1994a; Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995). On the other hand, examples are known

where no intermolecular aggregation occurs (Ferguson, Gallagher, Glidewell & Zakaria, 1993*a*). Amongst α -ferrocenyl alcohols, such as (1) and (2),

 $[Fc = (C_5H_5)Fe(C_5H_4)]$

examples have been observed of dimers [2e (Ferguson, Glidewell Gallagher, & Zakaria, 1993b) and $[(C_5H_5)Fe(C_5H_4)]_2C(OH)CMe_3$ (Sharma, Cervantes-Lee & Pannell, 1992)] of chains generated both by 2_1 screw axes [1d (Li, Ferguson, Glidewell & Zakaria, 1994)] and by glide planes [1e (Ferguson, Gallagher, Glidewell & Zakaria, 1994b)], all characterized by intermolecular $O-H \cdots O$ interactions; and of monomers containing intramolecular $O - H \cdot \cdot \pi (C_5 H_5)$ interactions [2a](Ferguson, Gallagher, Glidewell & Zakaria, 1993b)]. These examples, and others (Ferguson, Gallagher, Glidewell & Zakaria, 1993c; Glidewell, Ferguson, Lough & Zakaria, 1994), indicate that the hydrogen-bonding patterns in ferrocenyl alcohols are still very difficult to predict. Continuing this study, we report here the structures of 1-ferrocenylethanol (1a), 1-ferrocenyl-2phenylethanol (1f), 1-ferrocenyl-1-phenylpropan-1-ol (2b), 1-ferrocenyl-1-phenyl-2-methylpropan-1-ol (2c), 1-ferrocenyl-1-phenyl-2,2-dimethylpropan-1-ol (2d), 1ferrocenyl-1,2-diphenylethanol (2f) and diferrocenyl-(phenyl)methanol (2g).

2. Experimental

2.1. Synthesis

Samples of (1a) and (1f) were prepared by LiAlH₄ reduction of acetylferrocene and (phenylacetyl)ferrocene, respectively, and samples of (2b), (2c), (2d) and (2f)were prepared by reaction of phenyllithium with the appropriate acylferrocene (Ferguson, Gallagher, Glidewell & Zakaria, 1994b). Compound (2g) was prepared by reaction of phenyllithium with diferrocenyl ketone (Pauson & Watts, 1962); ¹³C NMR (CDCl₃): 67.0 (d), 67.3 (d), 68.0 (d), 68.2 (d) and 99.8 (s, C_5H_4); 68.6 (d, C₅H₅); 73.6 (s, C-OH); 126.3 (d), 127.0 (d), 128.7 (d) and 146.7 (s, C_6H_5). Crystals of (2c) suitable for Xray examination were grown by slow evaporation of a solution in dry acetone; all other crystals were grown from solutions in dichloromethane/light petroleum (b.p. 313-333 K).

2.2. Data collection and refinement

Details of cell data, data collection and refinement are summarized in Table 1. For (1a), the systematic absences (hkl absent when h + k + l = 2n + 1; 0kl absent when l = 2n + 1; *hhl* absent when $2h + l \neq 4$) allow the space group to be uniquely identified as $I4_1cd$ (No. 110). For (1f), the space group was uniquely identified as Pnaa (No. 56) from the systematic absences (hk0 absent when h = 2n + 1; h0l absent when h = 2n + 1; 0kl absent when k + l = 2n + 1). The space group of (2b) was uniquely identified as $P2_1/c$ (No. 14) from the systematic absences (h0l absent when l = 2n + 1; 0k0 absent when k = 2n + 1). Compound (2c) crystallized in the monoclinic system and the systematic absences (hkl absent if h + k = 2n + 1; h0l absent if 1 = 2n + 1) permitted the space group to be either C2/c (No. 15) or Cc (No. 9). Initial attempts to solve the structure in the centrosymmetric space group C2/c afforded no sensible solution, but the structure was readily solved in the non-centrosymmetric space group Cc, with two molecules in the asymmetric unit. The space group Cc is polar and calculations with the opposite hand to that described here converged with R and wR values (0.024 and 0.036, respectively) slightly higher than those given in Table 1, but with no significant differences in the dimensions. Crystals of (2d) are monoclinic; initial attempts to determine cell dimensions using Mo $K\alpha$ radiation indicated that one of the repeat vectors was around 60 Å, but this could not be established precisely, because of insufficient resolution of the reflections: subsequent investigation of this compound was therefore undertaken using $Cu K\alpha$ radiation. The systematic absences (h0l absent if h + 1 = 2n + 1; 0k0 absent if k = 2n + 1 identified the space group uniquely as $P2_1/n$ (No. 14). In addition, it was observed that the 00l reflections were all absent unless 1 = 4n; however, detailed comparison of the intensities of the h0l and h0lreflections confirmed that the Laue group was indeed 2/mrather than mmm, so that the behaviour of the 00l reflections is not an indicator of space-group symmetry. Compound (2f) crystallized in the monoclinic system and the systematic absences (*hkl* absent if h + k =2n+1; h0l absent if 1 = 2n+1) permitted the space group to be either C2/c or Cc; C2/c was chosen and confirmed by successful analysis. Compound (2g) crystallized in the triclinic system, with possible space groups P1 (No. 1) and P1 (No. 2); P1 was chosen and confirmed by successful analysis. The diagrams were prepared using ORTEPII (Johnson, 1976); final fractional coordinates are given in Table 2, selected dimensions in Table 3 and significant inter- and intramolecular distances involving hydroxyl H atoms in Table 4.*

^{*}Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, and stereoviews and packing diagrams have been deposited with the IUCr (Reference: AB0340). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

HYDROGEN BONDING IN α -FERROCENYL ALCOHOLS

	Table 1. Experimental details								
	24 Fe 2O 20								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nic 9 (11) 88 (16) 20 (16) 44 (11) 90 (10) 962 (11) .2 (2)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ία 17								
$\begin{array}{cccc} Crystal size (mm) & 0.41 \times 0.22 \times & 0.36 \times 0.35 \times & 0.39 \times 0.39 \times 0.39 \times 0.39 \times 0.38 \times & 0.39 \times 0.38 \times & 0.600 \times 0.200 \times & 0.36 \times 0.30 \times & 0.39 \times 0.33 \times 0.37 & 0.500 & 0.7ange $	5 1)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	× 0.33 ×								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ıs CAD-4								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rical, ψ -scans								
reflectionsNo. of independent122831373309365510 75940104507reflectionsNo. of observed850150822893286413017333435reflectionsCriterion for $l > 3.0\sigma(l)$ $l > 2.5\sigma(l)$ l	7 5								
No. of observed reflections850150822893286413017333435Criterion for observed reflections $l > 3.0\sigma(l)$ $l > 2.5\sigma(l)$									
observed reflections 0.015 - 0.012 0.006 0.0493 0.026 - R_{int} 0.015 - 0.012 0.006 0.0493 0.026 - R_{max} (°) 26.88 26.88 26.92 26.92 60.08 26.91 26.87 Range of h, k, l -29 → h → 29 0 → h → 12 -13 → h → 12 0 → h → 32 0 → h → 9 -33 → h → 32 -11 → h - $-3 → k → 21$ 0 → k → 19 0 → k → 13 -9 → k → 9 0 → k → 14 0 → k → 7 0 → k → 1 $-9 → l → 0$ 0 → l → 24 0 → l → 18 -22 → l → 22 -74 → l → 74 0 → l → 31 -15 → l - No. of standard 3 3 3 3 3 3 3 Frequency of 120 60 120 120 120 120 120 standard reflections - - - 1.0 <1.0	2 5 m (1)								
K_{int} 0.015 - 0.012 0.006 0.0493 0.026 - θ_{max} (°) 26.88 26.88 26.92 26.92 60.08 26.91 26.87 Range of h, k, l -29 \rightarrow h \rightarrow 29 $0 \rightarrow$ h \rightarrow 12 -13 \rightarrow h \rightarrow 12 $0 \rightarrow$ h \rightarrow 32 $0 \rightarrow$ h \rightarrow 9 $-33 \rightarrow$ h \rightarrow 32 $-11 \rightarrow$ h \rightarrow $-3 \rightarrow$ k \rightarrow 21 $0 \rightarrow$ k \rightarrow 19 $0 \rightarrow$ k \rightarrow 13 $-9 \rightarrow$ k \rightarrow 9 $0 \rightarrow$ k \rightarrow 14 $0 \rightarrow$ k \rightarrow 7 $0 \rightarrow$ k \rightarrow 1 No. of standard 3	.50(1)								
reflections Frequency of 120 60 120									
reflections Intensity decay (%) <1.0 <1.0 <1.0 1.0 <1.0 1.1									
Refinement F G O <tho< td=""><td>i</td></tho<>	i								
retinement No. of parameters 130 185 194 404 830 235 275 used									
H-atom treatment C—H riding, 0.95 Å, O—H. All 0.95 Å, O=H. All 0.95 Å, O=	ms: C—H 0.95 Å, 1. All H-atom inters refined $1/[\sigma^2(F)]$								

	(1 <i>a</i>)	(1 <i>f</i>)	(2 <i>b</i>)	(2 <i>c</i>)	(2 <i>d</i>)	(2f)	(2g)
$(\Delta/\sigma)_{\rm max}$	0.000	0.001	0.000	0.004	0.390	0.000	0.001
$\Delta \rho_{\rm max}$ (e Å ⁻³)	0.15	0.29	0.23	0.22	0.55	0.25	0.45
$\Delta \rho_{\rm min}$ (e Å ⁻³)	-0.16	-0.21	-0.22	-0.17	-0.68	-0.23	-0.35
Extinction method	None	None	None	Larson (1970)	Zachariasen type 2 Gaussian isotropic	None	None
Extinction coefficient	-	-	-	7523 (699)	2.98375	-	-
Source of atomic	International	International	International	International	International	International	International
scattering	Tables for X-ray	Tables for X-ray	Tables for X-ray	Tables for X-ray	Tables for X-ray	Tables for X-ray	Tables for X-ray
factors	Crystallography (1974, Vol. IV, Table 2.2B)	Crystallography (1974, Vol. IV, Table 2.2B)	Crystallography (1974, Vol. IV, Table 2.2B)	Crystallography (1974, Vol. IV, Table 2.2B)			
Computer progra	ms						
Data collection	CAD-4 software (Enraf-Nonius, 1989)	CAD-4 software (Enraf–Nonius, 1989)	CAD-4 software (Enraf–Nonius, 1989)	CAD-4 software (Enraf–Nonius, 1989)	MSC/AFC Diffractometer Control	CAD-4 software (Enraf-Nonius, 1989)	CAD-4 software (Enraf–Nonius, 1989)
Cell refinement	Enraf-Nonius SET4 and CELDIM	Enraf-Nonius SET4 and CELDIM	Enraf-Nonius SET4 and CELDIM	Enraf–Nonius SET4 and CELDIM	MSC/AFC Diffractometer	Enraf-Nonius SET4 and	Enraf-Nonius SET4 and
Data reduction	DATRD2 in NRC- VAX94 (Gabe, Le Page, Charland, Lee & White, 1989)	DATRD2 in NRC- VAX94 (Gabe, Le Page, Charland, Lee & White, 1989)	DATRD2 in NRC- VAX94 (Gabe, Le Page, Charland, Lee & White, 1989)	DATRD2 in NRC- VAX94 (Gabe, Le Page, Charland, Lee & White, 1989)	<i>TEXSAN</i> (MSC, 1992)	DATRD2 in NRC- VAX94 (Gabe, Le Page, Charland, Lee & White, 1989)	DATRD2 in NRC- VAX94 (Gabe, Le Page, Charland, Lee & White, 1989)
Structure solution	NRCVAX94 and Patterson heavy-	NRCVAX94 and Patterson heavy-	NRCVAX94 and Patterson heavy-	NRCVAX94 and Patterson heavy-	TEXSAN and direct methods	NRCVAX94 and Patterson heavy-	NRCVAX94 and Patterson heavy-
Structure refinement	NRCVAX94	NRCVAX94	NRCVAX94	NRCVAX94	TEXSAN	NRCVAX94	NRCVAX94
Preparation of material for publication	NRCVAX94 and WordPerfect	NRCVAX94 and WordPerfect	NRCVAX94 and WordPerfect	NRCVAX94 and WordPerfect	TEXSAN	NRCVAX94 and WordPerfect	NRCVAX94 and WordPerfect

Table 1 (cont.)

3. Results and discussion

3.1. Description of structures

3.1.1. Structures dominated by $O - H \cdots O$ hydrogen bonding. Crystals of racemic 1-ferrocenylethanol (1a, Fig. 1) are tetragonal, space group $I4_1cd$, with one molecule in the asymmetric unit. The molecules are linked together by hydrogen bonds of the $O-H \cdots O$ type into infinite spiral chains, generated by the 41 screw axis (Fig. 2); the shortest $O \cdot \cdot O$ distance within the helix is 2.724(3)Å. Four such helices run through each unit cell, two of each hand accommodating the equal numbers of R and S molecules present in the racemic mixture. Within a given helix, however, all the molecules are of the same chirality. The anomalously high incidence of high-symmetry space groups (taken to be those other than triclinic, monoclinic and orthorhombic) for hydrogen-bonded organic alcohols has recently been established (Brock & Duncan, 1994): of these, the majority are trigonal, and particularly tetragonal. Other recent trigonal examples include Me₂CHCPh₂OH (P31c) and $(C_6F_5)_2$ CHOH (R3) (Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995). Although the Cambridge Structural Database (Allen, Kennard & Taylor, 1983) does not yet contain any examples of simple organic alcohols in hexagonal and cubic space groups, the series $Ph_r(4-CH_3C_6H_4)_{3-r}COH$, for x = 0, 1, 2, all crystallize in the cubic space group Pa3 with a Z' value (Brock & Dunitz, 1994) of 4/3 (Ferguson, Glidewell & Patterson, 1995).

The racemic form of (1f), 1-ferrocenyl-2-phenylethanol, crystallizes in the centrosymmetric orthorhombic space group Pnaa, with one molecule in the asymmetric unit. The molecules at (x, y, z) and $(x, \frac{1}{2} - y, \frac{1}{2} - z)$, which are related by a crystallographic rotation axis and thus have the same chirality, are linked by $O-H \cdots O$ hydrogen bonds into cyclic dimeric aggregates having twofold rotational symmetry (Fig. 3); the action of the a glide planes generates a further dimer in which the two molecules are both of opposite chirality to those in the initial dimer. In addition to the intermolecular $O - H \cdot \cdot O$ hydrogen bond, there is also a weak intramolecular $O - H \cdot \cdot \pi(C_5H_5)$ interaction involving, as in (2a) (Ferguson, Gallagher, Glidewell & Zakaria, 1993b), the unsubstituted cyclopentadienyl ring of the ferrocenyl group, with the intramolecular distance $O \cdot \cdot \cdot C21$ of 3.548(7)Å, so that the hydroxyl H atom is, in effect, participating in three-centre (Taylor, Kennard & Versichel, 1984) hydrogen bonding. There are well documented examples of intramolecular $O-H \cdot \cdot \pi (C=C)$ interactions (Schweizer, Dunitz, Pfund, Ramos Tombo & Ganter, 1981; Zimmerman & Zuraw, 1989) and intermolecular $O - H \cdot \cdot \pi$ (arene) interactions as the sole force towards intermolecular aggregation (Baran, Kanters, Lutz, Van der Maas, Schouten & Wierzejewska-Hnat, 1990; Ferguson, Gallagher, Glidewell & Zakaria, 1994a; Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995). The participation of cyclopentadienyl rings, themselves more electron rich than either C = C bonds or arene rings, in

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^2)

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$

	x	у	Z	U_{eq}		x	у	Z	U_{eq}
(1a)		-		~4	C3	0.26990(18)	0.8697 (5)	0.3421 (2)	0.066 (2)
Fe1	0 12164 (2)	0.10180(2)	0.0	0.0473(3)	C4	0.32543 (16)	0.8541 (4)	0.2498 (2)	0.0600 (19)
	() 10177 (16)	0.74807(13)		0.0475(3)	C5	0.48435(11)	0.3793 (3)	0.62423(17)	0.0308 (13)
	(14400)(10)	0.24607 (13)	-0.2837 (3)	0.003(2)	C5 C6	0.43970 (12)	0.3775(3)	0.02423(17)	0.0570 (15)
CI	0.14499 (18)	0.21890(18)	-0.2010 (6)	0.054 (2)	0	0.43870(13)	0.2555 (4)	0.0552(2)	0.0500(10)
C2	0.0942 (2)	0.2234 (2)	-0.3221 (9)	0.092(4)	C/	0.46335 (18)	0.1291 (5)	0./034(3)	0.069 (2)
C11	0.16253 (17)	0.15834 (17)	-0.1596 (6)	0.048 (2)	C8	0.40843 (17)	0.1538 (5)	0.5613 (3)	0.071 (2)
C12	0.19854 (16)	0.14233 (17)	-0.0186(7)	0.056 (3)	C11	0.27706 (10)	0.5094 (3)	0.19227 (14)	0.0365 (12)
C13	0.20616 (18)	0.08193 (18)	-0.0235(10)	0.069 (3)	C12	0.28085 (14)	0.5623 (4)	0.11697 (18)	0.0460 (15)
C14	0.1756(2)	0.06002 (18)	-0.1660 (8)	0.070(3)	C13	0 30933 (13)	0 4313 (4)	0.08866 (19)	0.0522 (17)
C15	0.1750(2)	0.10775 (19)	0.100 (0)	0.070(3)	C14	0.33340(14)	0.7076 (5)	() 1457(2)	0.0322(17)
	0.1460 (2)	0.10/23(18)	-0.2494 (8)	0.001 (3)	C14	0.32349(14)	0.2970(3)	0.1437 (2)	0.0404 (17)
CZI	0.0466 (3)	0.1380(3)	0.0701 (12)	0.104 (5)	CIS	0.30395(11)	0.3444 (3)	0.20939(10)	0.0391 (12)
C22	0.0817 (3)	0.1340 (2)	0.2131 (11)	().095 (5)	C21	0.15881 (15)	0.2931 (6)	0.1009 (2)	0.0581 (19)
C23	0.0945 (2)	0.0772 (2)	0.2396 (9)	0.073 (3)	C22	0.16071 (16)	0.3619 (5)	0.0307 (2)	0.0596 (19)
C24	0.0674 (2)	0.0450(2)	0.1160 (10)	0.077 (3)	C23	0.19013 (17)	0.2565 (8)	-0.0021(2)	0.085 (3)
C25	0.0371(2)	0.0830(3)	0.0083 (11)	0.099 (5)	C24	0.20788 (18)	0.1126(7)	0.0472 (5)	0.108 (4)
HO	0 2096 (18)	0 2621 (19)	-0.209 (6)	0.049 (15)	C25	0.1884(2)	0 1350 (6)	0 1135 (3)	0.093 (3)
	0.2070 (10)	0.2021 (17)	0.207 (0)	0.047 (15)	C31	0.1001(2) 0.22825(12)	0.5063 (3)	0.20540(15)	0.0400(12)
(10					C31	0.12122 (12)	0.5005(5)	0.29349(13)	0.0400(12)
(\mathbf{J})	0.57745 (()	0.45000.40	0 10607 (2)	0.0410 (2)	C32	0.17173 (13)	0.4973 (4)	0.28434 (19)	0.0518 (16)
Fel	0.57745(6)	0.45090 (4)	0.13587(3)	0.0419(3)	C33	0.15059 (16)	0.3918 (6)	0.3312(2)	0.069 (2)
01	0.5474 (6)	0.2287 (3)	0.1770(2)	0.079(3)	C34	0.1847 (2)	0.2935 (5)	0.3903 (3)	0.070 (2)
C1	0.5513 (5)	0.2476 (3)	0.1037 (2)	0.049 (2)	C35	0.24150 (19)	0.3024 (5)	0.4044 (2)	0.062 (2)
C2	0.6216 (5)	0.1698 (3)	0.0688(3)	0.056(3)	C36	0.26327 (13)	0.4094 (4)	0.35807(17)	0.0473 (15)
C11	0.6222 (4)	0.3325 (3)	0.0912(2)	0.039(2)	C41	0.46133 (10)	0.4916 (3)	0.55090(15)	0.0373 (12)
C12	0.7352 (5)	0.3651(3)	0.1287(2)	0.048(2)	C42	0.45848 (14)	0 4398 (4)	0.47304(18)	0.0485 (16)
C12	0.7703 (5)	0.3031(3)	0.0008 (3)	0.059(3)	C42	0.42080(14)	0.4370(4)	0.41022(17)	0.0527 (16)
	0.7703(3)	0.4474(3)	0.0750(3)	0.059(3)	C45	0.4.5069 (14)	0.3712(4)	0.41933(17)	0.0527 (10)
C14	0.0808 (0)	0.4655 (3)	0.0450(2)	0.059(3)	C44	0.41/21(14)	0.7066 (5)	0.4637(2)	0.0470(17)
C15	0.5902 (5)	0.3953 (3)	0.0389 (2)	0.048 (2)	C45	0.43567 (11)	0.6584 (3)	0.54452(16)	0.0388 (13)
C21	0.4107 (5)	0.4415 (4)	0.2000 (3)	0.066(3)	C51	0.58148 (15)	0.7032 (6)	0.5677 (2)	0.0578 (19)
C22	0.5283 (6)	0.4627 (3)	0.2386 (2)	0.065 (3)	C52	0.57916 (15)	0.6364 (6)	0.4939 (3)	0.063 (2)
C23	0.5796 (6)	0.5419 (3)	0.2134 (2)	0.064 (3)	C53	0.54996 (17)	0.7501 (9)	0.4370 (3)	0.089(3)
C24	0 4952 (7)	0 5697 (3)	0.1577(3)	0.073 (4)	C54	0 53290 (18)	0.8907 (7)	0 4735 (5)	0.103 (4)
C25	0.3021 (6)	0.5085 (4)	0.1505 (3)	0.075(4)	C55	0.55287 (17)	0.8608 (6)	0 5563 (4)	0.084(3)
C25	0.3921(0)	0.5005(4)	0.1005 (3)	0.073(-7)	C55	0.55207 (17)	0.8003 (4)	0.5505(4)	0.004 (3)
C31	0.0103 (4)	0.1711(3)	-0.0095 (2)	0.045(2)	001	0.30846 (12)	0.4902 (4)	0.09//1(13)	0.0408 (15)
C32	0.5003 (5)	0.1323 (3)	-0.0418 (2)	0.052(3)	C62	0.56498 (14)	0.49/4 (4)	0.73698(19)	0.0542 (16)
C33	0.4861 (6)	0.1340 (3)	-0.1135 (3)	0.063 (3)	C63	0.58659 (17)	().6029 (6)	0.8029 (2)	0.072 (2)
C34	0.5809 (6)	0.1743 (3)	-0.1542 (2)	0.066(3)	C64	0.5530(2)	0.7049 (5)	0.8310(2)	0.073 (3)
C35	0.6901 (6)	0.2129 (3)	-0.1226 (3)	0.068(3)	C65	0.49651 (19)	0.6985 (4)	0.7943 (2)	0.062 (2)
C36	0.7059 (5)	0.2118 (3)	-0.0513(3)	0.057(3)	C66	0.47425 (14)	0.5907 (4)	0.72907 (17)	0.0497 (15)
HO	0 553 (8)	0.263 (5)	0.196(3)	0.13(4)	H01	0 1969 (18)	0.674 (5)	0.151 (3)	0.060(12)
110	(1.555 (0)	0.205 (5)	0.170 (5)	0.15 (1)	LI01	0.5416 (18)	0.313(5)	0.590 (2)	0.056 (12)
(21)					1102	0.5410(10)	0.515(5)	0.590(2)	0.050(12)
(2b)	0.04401.00	0.10710 (2)	() 15774 (2)	0.02000 (10)	(2.0				
Fel	0.34401 (3)	0.12/19(3)	0.15774(2)	0.03980(18)	(2a)		0.0404.00	0.46000.60	0.0504
01	0.0091 (2)	0.05882 (18)	0.17093 (15)	0.0584 (12)	Fel	0.2380(3)	0.9694 (2)	0.46992(3)	0.0504
Cl	0.0398 (2)	0.1911 (2)	0.17478 (16)	0.0389 (11)	Fe2	0.7417 (3)	0.5332 (2)	0.47028 (3)	0.0519
C2	0.0594 (2)	0.2378 (3)	0.27850(17)	0.0519(13)	Fe3	0,7580(3)	0.1789 (2)	0.28097 (3)	0.0550
C3	-0.0603(3)	0.2192(3)	0.3255(2)	0.0690 (18)	Fe4	0.2449 (3)	0.1158 (2)	0.22118 (4)	0.0536
CII	0.1620(2)	0.2134(2)	0 13032 (16)	0.0376 (10)	011	-0.145(1)	0.9184 (7)	0 4450 (1)	0.0600
CII	0.1020(2)	0.2134(2)	0.15770 (10)	0.0370(10)	021	0.143(1)	0.5831 (7)	0.4481(1)	0.0613
C12	0.2043 (2)	0.3042(2)	0.13779(19)	0.0499(14)	021	0.343(1)	0.3317 (7)	0.3451(1)	0.0646
CIS	0.3537 (3)	0.2977(3)	0.0929 (2)	0.0000 (17)	031	0.383(1)	0.2317(7)	0.3032(1)	0.0040
C14	0.3074 (3)	0.2049 (3)	0.02481 (19)	0.0595 (16)	041	0.627(1)	0.0640(7)	0.1982(1)	0.0595
C15	0.1892 (2)	0.1527 (3)	0.04694 (17)	0.0490 (13)	C11	-0.056 (2)	0.999(1)	0.4355 (2)	0.0540
C21	0.3476(3)	-0.0076 (3)	0.26097 (19)	0.0600 (15)	C12	-0.189 (2)	1.080(1)	0.4279 (2)	0.0619
C22	0.4380(3)	0.0898 (3)	0.2927 (2)	0.0710(17)	C13	-0.303 (2)	1.026(1)	0.4115 (3)	0.0854
C23	0.5306 (3)	0.0962 (3)	0.2302 (3)	0.0710(19)	C14	-0.111(2)	1.175(1)	0.4187 (2)	0.0785
C24	0.4968 (3)	0.0035(3)	0.1604(2)	0.0648 (17)	C15	-0.297(2)	1.114 (1)	0.4452 (2)	0.0782
C24	0.2020 (2)	0.0635(3)	0.1707(2)	0.0506 (17)	C21	0.444(2)	0.510(1)	0.4374(2)	0.0497
C25	0.3838 (3)	-0.0011 (3)	0.1797(2)	0.0390(13)	C21	0.444 (2)	0.310(1)	0.4396 (2)	0.0597
C31	-0.0783(2)	0.2582 (2)	0.11453(15)	0.0364 (11)	C22	0.511(2)	0.431(1)	0.4260(2)	0.0382
C32	-0.1985 (2)	0.1978 (2)	0.08412 (19)	0.0498 (13)	C23	0.179(2)	0.484 (1)	0.4148 (2)	0.0693
C33	-0.3035 (2)	0.2637 (3)	0.03083 (19)	0.0604 (16)	C24	0.391 (2)	0.342(1)	0.4166 (2)	0.0/15
C34	-0.2912 (3)	0.3886 (3)	0.00825 (18)	0.0563 (15)	C25	0.218 (2)	0.380(1)	0.4460 (2)	0.0732
C35	-0.1738(3)	0.4489 (3)	0.03848 (17)	0.0506 (13)	C31	0.479 (2)	0.153(1)	0.3146 (2)	0.0595
C36	-0.0672(2)	0.3848 (2)	0.09140 (16)	0.0423 (11)	C32	0.356 (2)	0.073(1)	0.3232 (2)	0.0646
u 0	0.076(3)	0.020(3)	0.179(2)	0.079(11)	C33	0.242 (2)	0.129(1)	0.3389(2)	0.0893
nu	0.070(3)	0.020 (3)	0.177(2)	0.079(11)	C34	0.439 (2)	-0.022(1)	0 3333 (2)	0.0949
(a)					C34	0.729 (2)	0.022 (1)	0.3353 (2)	0.0003
(2c)				0.00.0	C33	0.238 (2)	0.054 (1)	0.3039 (3)	0.0902
Fel	0.239164 (17)	0.33091 (5)	0.10601 (2)	0.0363 (2)	C41	0.527 (2)	0.141(1)	0.18/9(2)	0.0526
Fe2	1/2	0.66830(5)	1/2	0.0368 (2)	C42	0.657 (2)	0.222(1)	0.1800 (2)	0.0597
01	0.20908 (9)	0.7258 (3)	0.19222 (14)	0.0460 (10)	C43	0.773 (2)	0.167(1)	0.1653 (2)	0.0790
02	0.52639 (10)	0.2676 (3)	0.61194 (15)	0.0507 (12)	C44	0.573 (2)	0.311(1)	0.1684 (2)	0.0896
<u>C</u> I	0.25177 (10)	0.6192 (3)	0.24291 (15)	0.0363 (12)	C45	0.764 (2)	0.268 (1)	0.1973 (2)	0.0708
c?	0.29516(12)	0.7481(3)	0 29506 (16)	0.0437 (13)	CIT	0.064 (2)	1.0431 (10)	0.4518 (2)	0.0480
<u> </u>	0.27510(12)	0.7401 (3)	0.2/00(10)	0.0.07(10)	C.11	0.007 (2)		J (L)	

Table 2 (cont.)

CUI	x 0.026 (2)	y	z 0.4726 (2)	U _{eq}	(20	x	у	z	U_{eq}
C112	0.020(2)	1.052(1)	0.4/20(3)	0.0538	(<i>2f</i>)	0 20150 (2)	0.10751 (12)	0.05(20.0)	0.0000 (1)
	0.130(2)	1.100(1)	0.4832(2)	0.0660	Fel	0.39159(2)	0.18/51 (13)	0.05639 (2)	0.0399 (4)
C114	0.204(2)	1.125(1)	0.4093(3)	0.0572		0.33818(11)	0.4434 (6)	-0.07806 (12)	0.0463 (18)
C121	0.223(2) 0.257(3)	1.069(1)	0.4304(2) 0.4603(2)	0.0531	C1 C1	0.34737(15) 0.20245(16)	0.2047 (9)	-0.07813(16)	0.036(2)
C121	0.237(3)	0.820(1)	0.4003(2)	0.0633	C2	0.39345 (16)	0.0/12(9)	-0.09142 (16)	0.044(2)
C122	0.204(2) 0.336(3)	0.825(1)	0.4803(3) 0.4017(3)	0.0643		0.34035 (15)	0.1439 (8)	-0.02025 (16)	0.036(2)
C123	0.350(3)	0.074(1)	0.4917(2)	0.0603	C12	0.33167 (17)	-0.0681 (9)	0.00763 (18)	0.046 (3)
C124	0.401(2)	0.903(1)	0.4788 (3)	0.0690		0.33000 (18)	-0.0558 (10)	0.05888 (19)	0.054 (3)
C131	0.407(2)	0.005(1)	0.4180(2)	0.0610	C14	0.31339(10) 0.317(2(15))	0.1615(11)	0.06254 (19)	0.056 (3)
C132	0.042(2)	0.954(1)	0.4100(2)	0.0019	C15	0.31/03(15)	0.2842 (9)	0.01412(18)	0.047(3)
C133	0.099 (3)	0.000(1)	(13067(3))	0.0010	C21 C22	0.4570(2)	0.3522 (14)	0.0474(2)	0.078 (4)
C134	0.009 (3)	0.867(2)	0.3902(3)	0.0910	C22	0.46960 (19)	0.1358 (13)	0.0689 (3)	0.082(5)
C135	0.200(3)	0.867(2)	0.3852(3)	0.0964	C23	0.4364 (2)	0.1199(11)	0.1192 (3)	0.076 (4)
C136	0.255(2)	1.011(1)	0.3900(3)	0.0744	C24	0.4345(2)	0.3207 (13)	0.1291(2)	0.069 (4)
C211	0.157(2)	0.462(1)	0.4003(3)	0.0744	C25	0.4341(2) 0.20(22(15))	0.4681 (10)	0.0856 (3)	0.070 (4)
C212	0.502(2)	0.402(1)	0.4324(3)	0.0500	C31	0.29633 (15)	0.1558 (8)	-0.122/1 (16)	0.035 (2)
C212	0.527(2) 0.667(2)	0.398(1)	0.4732(3) 0.4830(2)	0.0568	C32	0.27602 (15)	0.3121 (9)	-0.16441 (17)	0.046 (3)
C214	0.785(2)	0.379(1)	().4686(3)	0.0508	C33	0.22994 (18)	0.2644(9)	-0.20477(18)	0.054 (3)
C215	0.705(2)	0.577(1)	0.4000(3)	0.0598	C34	0.20432 (17)	0.0620(11)	-0.20434 (19)	0.053(3)
C221	0.752(2)	0.414(1)	0.4490(2) 0.4619(3)	0.0670	C35	0.22407(18) 0.27044(17)	-0.0903 (9)	-0.1039(2)	0.050(3)
C222	0.715(2)	0.600(1)	() 4823 (3)	0.0662	C30	0.27044(17) 0.40524(15)	-0.0304 (9)	-0.12346(18)	0.040(3)
C223	0.847(3)	0.674(1)	(1.4023(3))	0.0002	C41 C42	0.40324(13) 0.43204(17)	0.1300(7)	-0.14702(17)	0.057(2)
C224	0.960(2)	0.599(1)	0.4776(4)	0.0736	C43	(1432) + (17)	() 3737(9)	-0.1358(2) -0.2051(3)	0.055(3)
C225	0.904(3)	0.636(1)	0.4593 (3)	0.0732	C45 C44	0.4270(2)	0.3737(9)	-0.2051(3) -0.2405(2)	0.003(4)
C231	0.531(2)	0.567(1)	0.4393(3)	0.0563	C45	() 3993 (2)	0.2324(11) 0.0405(11)	-0.2493(2) -0.2439(2)	0.067 (4)
C232	0.490 (2)	0.669(1)	0.4164(2)	0.0612	C46	0.3775(2) 0.38847(18)		-0.1930(2)	0.009(4)
C233	0.574 (3)	0.725(1)	0.4017(3)	0.0865	H0/4*	0 331	0.521	-0.070	0.0556
C234	0.693 (3)	0.680 (2)	0.3907 (3)	0.0883	H05*	0.388	0.474	0.052	0.0556
C235	0.735 (2)	0.580(2)	0.3935 (3)	0.0819	H0c*	0.362	0.485	-0.112	0.0556
C236	0.651 (2)	0.522(1)	0.4083(3)	0.0711		0.502	0.105	0.112	0.0550
C311	0.598 (2)	0.103 (1)	0.2989 (2)	0.0519	(2g)				
C312	0.545 (2)	0.093(1)	0.2783 (3)	0.0642	Fe1	0.10277 (4)	-0.12015(4)	0.26601 (4)	0.0351 (2)
C313	0.679 (3)	0.044(1)	0.2679 (3)	0.0746	Fe2	-0.45278 (4)	-0.37853(4)	-0.15558(3)	0.0361 (2)
C314	0.810(2)	0.022(1)	0.2822 (3)	0.0726	01	-0.1204(2)	-0.0856(2)	0.0224(2)	0.0437 (14)
C315	0.759 (2)	0.056(1)	0.3010(2)	0.0556	C1	-0.1988(2)	-0.1026(2)	0.1108 (2)	0.0305 (14)
C321	0.779 (3)	0.330(1)	0.2901 (3)	0.0736	C11	-0.1231(3)	-0.1711(3)	0.1756 (2)	0.0341 (15)
C322	0.718 (2)	0.324 (1)	0.2694 (3)	0.0671	C12	-0.0706(3)	-0.2887(3)	0.1099 (3)	0.0492 (18)
C323	0.845 (3)	0.273 (1)	0.2587 (3)	0.0784	C13	-0.0168(3)	-0.3257(3)	0.2027 (4)	0.063 (3)
C324	0.974 (2)	0.248(1)	0.2724 (4)	0.0807	C14	-0.0348(3)	-0.2332(4)	0.3244 (4)	0.060(3)
C325	0.936 (2)	0.280(1)	0.2920 (3)	0.0724	C15	-0.1005 (3)	-0.1370 (3)	0.3090(3)	0.0441 (19)
C331	0.586 (2)	0.199(1)	0.3323 (3)	0.0690	C21	0.2365 (3)	0.0350(3)	0.2456 (3)	0.051 (2)
C332	0.562 (2)	0.302(1)	0.3381 (2)	0.0787	C22	0.2886 (3)	-0.0832 (4)	0.2045 (3)	0.066 (2)
C333	0.660(3)	0.349(1)	0.3541 (3)	0.1008	C23	0.3274 (3)	-0.1015 (4)	0.3131 (4)	0.062 (3)
C334	0.775 (3)	0.291 (2)	0.3653 (3)	0.1358	C24	0.2983 (3)	0.0047 (4)	0.4199 (3)	0.056 (2)
C335	0.803 (3)	0.190(2)	0.3602 (3)	0.1313	C25	0.2429(3)	0.0880(3)	0.3783 (3)	0.0508 (19)
C336	0.710(2)	0.144(1)	0.3442 (3)	0.0784	C31	-0.3619 (3)	-0.1975 (2)	0.0286 (2)	0.0295 (13)
C411	0.412(2)	0.191 (1)	0.2035 (2)	0.0506	C32	-0.4599 (3)	-0.1740 (3)	-0.0573 (2)	0.0377 (16)
C412	0.461 (2)	0.2005 (10)	0.2244 (2)	0.0543	C33	-0.6073 (3)	-0.2755 (3)	-0.1038 (3)	0.0455 (18)
C413	0.328 (2)	0.251 (1)	0.2349 (2)	0.0650	C34	-0.6020 (3)	-0.3607 (3)	-0.0469 (3)	0.0424 (16)
C414	0.198 (2)	0.273 (1)	0.2205 (3)	0.0640	C35	-0.4510 (3)	-0.3125 (3)	0.0355 (2)	0.0341 (14)
C415	0.247 (2)	0.237 (1)	0.2015 (2)	0.0586	C41	-0.2843 (4)	-0.4236 (4)	-0.2405 (3)	0.067 (2)
C421	0.229 (3)	-0.036(1)	0.2122 (3)	0.0652	C42	-0.3962 (6)	-0.4103 (3)	-0.3222 (3)	0.075 (3)
C422	0.289 (2)	-0.033 (1)	0.2321 (3)	0.0714	C43	-0.5369 (4)	-0.5136 (4)	-0.3549 (3)	0.066 (3)
C423	0.163 (3)	0.018(1)	0.2433 (3)	0.0848	C44	-0.5095 (4)	-0.5904 (3)	-0.2931 (3)	0.058 (2)
C424	0.034 (2)	0.049 (1)	0.2303 (4)	0.0705	C45	-0.3541 (4)	-0.5337 (3)	-0.2214 (3)	0.059 (2)
C425	0.073 (3)	0.014(1)	0.2103 (3)	0.0820	C51	-0.2004(3)	0.0432 (2)	0.2180 (2)	0.0326 (15)
C431	0.423 (2)	0.086(1)	0.1703 (2)	0.0647	C52	-0.0854 (3)	0.1688 (3)	0.2596 (3)	0.0505 (19)
C432	0.461 (2)	-0.016 (1)	0.1662 (3)	0.0795	C53	-0.0830 (4)	0.2982 (3)	0.3639 (4)	0.064 (2)
C433	0.368 (3)	-0.071 (2)	0.1513 (3)	0.1163	C54	-0.1964 (4)	0.3034 (3)	0.4235 (3)	0.061 (2)
C434	0.247 (3)	-0.019 (2)	0.1406 (4)	0.1191	C55	-0.3121 (4)	0.1829 (3)	0.3818 (3)	0.054 (2)
C435	0.206 (2)	0.084 (2)	0.1433 (3)	0.1105	C56	-0.3136 (3)	0.0521 (3)	0.2794 (3)	0.0422 (17)
C436	0.300(2)	0.138(1)	0.1588 (3)	0.0812	HO	-0.047 (4)	-0.069 (4)	0.049 (3)	0.053 (11)

* Atoms H0a, H0b and H0c are the three components of the disordered hydroxyl H atom with occupancies 0.19, 0.35 and 0.46, respectively (from peak heights in difference maps).

 $O-H\cdots\pi(C_5H_5)$ interactions should therefore occasion no surprise. Although the IR spectra of a number of α metallocenylcarbinols have been interpreted in terms of $O-H\cdots M$ (M = Fe, Ru, Os) interactions (Shubina, Epstein, Timofeeva, Struchkov, Kreindlin, Fadeeva & Rybinskaya, 1991; Shubina, Epstein, Kreindlin, Fadeeva & Rybinskaya, 1991), similar spectral features were also observed in $[(C_5H_5)Fe(C_5H_4)]_2C(OH)CMe_3$ (Sharma, Cervantes-Lee & Pannell, 1992), which was subsequently shown by X-ray analysis to form cyclic $R_2^2(4)$

Table 3. Selected molecular dimensions (Å, °)

(a) I	(1 <i>a</i>),	(1f),	(2b)	and	(2f)
-------	----------------	-------	------	-----	------

	(1 <i>a</i>)	(1f)	(2 <i>b</i>)	(2f)
C11-C12	1.424 (7)	1.414 (6)	1.425 (3)	1.420 (7)
C12-C13	1.421 (6)	1.416 (7)	1.411 (4)	1.409 (6)
C13-C14	1.404 (9)	1.399 (8)	1.403 (5)	1.406 (9)
C14—C15	1.404 (7)	1.402 (7)	1.417 (4)	1.403 (7)
C15-C11	1.417 (6)	1.422 (6)	1.421 (3)	1.413 (6)
C21—C22	1.378 (14)	1.413(8)	1.406 (5)	1.389 (11)
C22-C23	1.374 (8)	1.397 (7)	1.412 (5)	1.366 (11)
C23-C24	1.368 (10)	1.417 (8)	1.397 (5)	1.362 (10)
$C_{24} - C_{25}$	1.407 (10)	1.388 (10)	1.413 (4)	1.374 (9)
$C_{23} - C_{21}$	1.387 (12)	1.400 (8)	1.59/(4)	1.408 (10)
$C_{1} = C_{1}$	1.303 (0)	1.495 (0)	1.318 (3)	1.320 (6)
$C_{2}-C_{2}$	1.514 (7)	1.529 (7)	1.537 (3)	1.434 (6)
C2-C3	_		1.510 (4)	
C1-C31	_	_	1.529 (3)	1.536 (6)
C2-C31	—	1.504 (7)	—	-
C2-C41	-	_	_	1.513 (6)
00	2.724 (3)			-
$O \cdot \cdot \cdot O_n$		2.868 (8)	-	—
01-C1-C11-C12	77.1 (7)	36.5 (5) -	-145.2 (4)	-150.4 (8)
C2-C1-C11-C12	-163.4 (10)	-82.5 (7)	-23.3 (2)	-30.7 (4)
C31-C1-C11-C12	2 —		98.9 (4)	91.5 (7)
H0-01-C1-C11	-90 (6)	24 (11)	36 (4)	-
(b) (2c)				
CII - CI2	1.432 (4)	C41-C42		1.422 (4)
C12 - C13	1.420 (5)	C42 - C43		1.410 (5)
C13 = C14	1.410 (5)	C43 - C44		1.414 (5)
C15 - C11	1 427 (4)	C44 - C43 C45 - C41		1.410 (4)
	1.516 (4)	$C_{5} - C_{41}$		1.521 (4)
C1-01	1.431 (3)	C5-02		1.439 (3)
C1-C31	1.528 (4)	C5-C61		1.520 (4)
C21-C22	1.372 (6)	C51-C52		1.394 (6)
C22—C23	1.352 (6)	C52—C53		1.367 (7)
C23-C24	1.395 (10)	C53-C54		1.396 (10)
~~ / ~~ ~	1 404 (11)	~~~ ~~~		
C24—C25	1.420 (11)	054-055		1.421 (10)
C24-C25 C25-C21	1.426 (11) 1.409 (7)	C54-C55 C55-C51		1.421 (10) 1.393 (6)
$C_{24} - C_{25}$ $C_{25} - C_{21}$ $C_{1} - C_{2}$ $C_{2} - C_{3}$	1.426 (11) 1.409 (7) 1.554 (4)	C54-C55 C55-C51 C5-C6		1.421 (10) 1.393 (6) 1.558 (4)
C24 - C25 C25 - C21 C1 - C2 C2 - C3 C2 - C4	1.426 (11) 1.409 (7) 1.554 (4) 1.523 (4) 1.513 (5)	C54-C55 C55-C51 C5-C6 C6-C7 C6-C8		1.421 (10) 1.393 (6) 1.558 (4) 1.528 (5) 1.517 (5)
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \end{array}$	1.426 (11) 1.409 (7) 1.554 (4) 1.523 (4) 1.513 (5)	C54-C55 C55-C51 C5-C6 C6-C7 C6-C8		1.421 (10) 1.393 (6) 1.558 (4) 1.528 (5) 1.517 (5)
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C3 \\ C2 - C4 \\ 01 - C1 - C11 - C12 \\ 01 - C1 - C11 - C12 \\ 01 - C1 - C11 \\ 01 - C1 \\ 01 - $	1.426 (11) 1.409 (7) 1.554 (4) 1.523 (4) 1.513 (5) 30.5 (3)	C54-C55 C55-C51 C5-C6 C6-C7 C6-C8 02-C5-C6	C41 — C42	1.421 (10) 1.393 (6) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3)
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C1 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C1 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C3 - C1 - C1 - C12 \\ C1 - C1 - C1 - C1 - C12 \\ C1 - C1 - C1 - C1 - C12 \\ C1 - C1 - C1 - C1 - C12 \\ C1 - C1 - C1 - C1 - C1 - C1 - C12 \\ C1 - C1 - C1 - C1 - C1 - C1 \\ C1 - C1 -$	$\begin{array}{c} 1.426 (11) \\ 1.409 (7) \\ 1.554 (4) \\ 1.523 (4) \\ 1.513 (5) \\ & 30.5 (3) \\ -85.2 (4) \\ -85.2 (5) \end{array}$	$C_{54} - C_{55}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $O_{2} - C_{5} - C_{6}$ $C_{6} - C_{5} - C_{6}$	C41—C42 C41—C42	1.421 (10) 1.393 (6) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4)
$\begin{array}{c} C24-C25\\ C25-C21\\ C1-C2\\ C2-C3\\ C2-C4\\ 01-C1-C11-C12\\ C2-C1-C11-C12\\ C31-C1-C11-C12\\ H01-01-C1-C11\\ \end{array}$	$\begin{array}{c} 1.426 (11) \\ 1.409 (7) \\ 1.554 (4) \\ 1.523 (4) \\ 1.513 (5) \\ & 30.5 (3) \\ -85.2 (4) \\ 2 & 152.3 (5) \\ & 29 (5) \end{array}$	$C_{34}-C_{53}$ $C_{5}-C_{51}$ $C_{5}-C_{6}$ $C_{6}-C_{7}$ $C_{6}-C_{8}$ $O_{2}-C_{5}-C_{6}$ $C_{6}-C_{5}-C_{6}$ $C_{6}-C_{5}-C_{6}$	C41 - C42 C41 - C42 C41 - C42 C41 - C42 C41 - C42	1.421 (10) 1.393 (6) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4) 2 151.4 (5) 26 (5)
$\begin{array}{c} C24-C25\\ C25-C21\\ C1-C2\\ C2-C3\\ C2-C4\\ 01-C1-C11-C12\\ C2-C1-C11-C12\\ C31-C1-C11-C12\\ H01-01-C1-C11\end{array}$	$\begin{array}{c} 1.426 (11) \\ 1.409 (7) \\ 1.554 (4) \\ 1.523 (4) \\ 1.513 (5) \\ 30.5 (3) \\ -85.2 (4) \\ 2 \\ 152.3 (5) \\ 29 (5) \end{array}$	$\begin{array}{c} C54-C55\\ C55-C51\\ C5-C6\\ C6-C7\\ C6-C8\\ 02-C5-C\\ C6-C5-C\\ C61-C5-\\ H02-O2-\end{array}$	C41 — C42 C41 — C42 C41 — C42 C41 — C42 - C5 — C41	1.421 (10) 1.393 (6) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4) 2 151.4 (5) 36 (5)
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ (c) (2d) \end{array}$	$\begin{array}{c} 1.426 (11) \\ 1.409 (7) \\ 1.554 (4) \\ 1.523 (4) \\ 1.513 (5) \\ 30.5 (3) \\ -85.2 (4) \\ 2 \\ 152.3 (5) \\ 29 (5) \end{array}$	$C_{54} - C_{55}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $O_{2} - C_{5} - C_{6}$ $C_{6} - C_{5} - C_{6}$ $C_{61} - C_{5} - C_{6}$ $H_{02} - O_{2} - C_{6}$	C41 — C42 C41 — C42 · C41 — C42 · C5 — C41	1.421 (10) 1.393 (6) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4) 2 151.4 (5) 36 (5)
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ (c) (2d) \end{array}$	$ \begin{array}{l} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $O_{2} - C_{5} - C_{6}$ $C_{6} - C_{5} - C_{6}$ $H_{02} - O_{2} - C_{6}$ $m = 2$	C41 - C42 C41 - C42 C41 - C42 C5 - C41 m = 3	$\begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \end{array}$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ H01 - 01 - C1 - C11\\ (c) (2d)\\ Cm11 - Cm12\end{array}$	$ \begin{array}{l} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \end{array} $	$\begin{array}{l} C34-C33\\ C35-C51\\ C5-C6\\ C6-C7\\ C6-C8\\ 02-C5-C6\\ C6-C5-C6\\ C6-C5-C6\\ C61-C5-C6\\ H02-O2-C5\\ H$	$ \begin{array}{l} C41 - C42 \\ C41 - C42 \\ C41 - C42 \\ -C5 - C41 \\ m = 3 \\ 1.42 (3) \end{array} $	$\begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \end{array}$ $m = 4$ $1.43 (3)$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ (c) (2d)\\ Cm11 - Cm12\\ Cm12 - Cm13\\ \end{array}$	$ \begin{array}{l} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.38 \ (3) \end{array} $	$\begin{array}{l} C34-C33\\ C35-C51\\ C5-C6\\ C6-C7\\ C6-C8\\ 02-C5-C6\\ C6-C5-C6\\ C6-C5-C6\\ C61-C5-C6\\ H02-O2-C5\\ H$	$ \begin{array}{l} C41 - C42 \\ C41 - C42 \\ C41 - C42 \\ C41 - C42 \\ C5 - C41 \\ m = 3 \\ 1.42 (3) \\ 1.45 (3) \end{array} $	$\begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \end{array}$ $\begin{array}{l} m = 4 \\ 1.43 (3) \\ 1.45 (3) \end{array}$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - O1 - C1 - C11\\ (c) (2d)\\ \hline \\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ \end{array}$	$ \begin{array}{l} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \\ \hline m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $0_{2} - C_{5} - (C_{6} - C_{5} - C_{6})$ $H_{02} - 0_{2} - C_{5} - (C_{6} - C_{5} - C_{6})$ $m = 2$ $I.42 (3)$ $I.43 (3)$ $I.43 (3)$ $I.39 (3)$	C41 - C42 $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.45 (3)$ $1.42 (3)$	$ \begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ \hline 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \\ \hline m = 4 \\ 1.43 (3) \\ 1.45 (3) \\ 1.42 (3) \\ \end{array} $
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ (c) (2d)\\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ \end{array}$	$ \begin{array}{l} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.42 \ (3) \\ \end{array} $	$\begin{array}{l} C_{34} - C_{53} \\ C_{55} - C_{51} \\ C_{5} - C_{6} \\ C_{6} - C_{7} \\ C_{6} - C_{8} \\ 0_{2} - C_{5} - C_{6} \\ C_{6} - C_{5} \\ C_{6} - C_{7} \\ C_{$	C41 - C42 $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.45 (3)$ $1.42 (3)$ $1.40 (3)$	$ \begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ \hline 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \\ \hline m = 4 \\ 1.43 (3) \\ 1.45 (3) \\ 1.42 (3) \\ 1.41 (3) \\ \end{array} $
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ (c) (2d)\\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ cm12 - Cm12\\ Cm12 - Cm12\\ Cm12 - Cm13\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm14 - Cm15\\ Cm15 - Cm12\\ Cm15 - Cm15\\ Cm15 - Cm12\\ Cm15 - Cm15 - Cm12\\ Cm$	$ \begin{array}{l} 1.426 (11) \\ 1.409 (7) \\ 1.554 (4) \\ 1.523 (4) \\ 1.513 (5) \\ & 30.5 (3) \\ -85.2 (4) \\ 2 & 152.3 (5) \\ 29 (5) \\ \hline \\ m = 1 \\ 1.42 (3) \\ 1.43 (3) \\ 1.43 (3) \\ 1.42 (3) \\ 1.41 (3) \\ 1.41 (3) \\ \end{array} $	$c_{34} - c_{53} \\ c_{55} - c_{51} \\ c_{5} - c_{6} \\ c_{6} - c_{7} \\ c_{6} - c_{8} \\ 0_{2} - c_{5} - c_{6} \\ c_{6} - c_{5} \\ c_{6} - c_{7} \\ $	C41 - C42 $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.45 (3)$ $1.42 (3)$ $1.40 (3)$ $1.43 (3)$	$ \begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \\ \end{array} \\ \begin{array}{l} m = 4 \\ 1.43 (3) \\ 1.45 (3) \\ 1.42 (3) \\ 1.41 (3) \\ 1.45 (3$
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ H01 - O1 - C1 - C11 \\ \hline (c) (2d) \\ \hline Cm11 - Cm12 \\ Cm12 - Cm13 \\ Cm13 - Cm14 \\ Cm14 - Cm15 \\ Cm15 - Cm11 \\ Cm21 - Cm22 \\ Cm22 - Cm22 \\ \hline Cm2$	$ \begin{array}{l} 1.426 (11) \\ 1.409 (7) \\ 1.554 (4) \\ 1.523 (4) \\ 1.513 (5) \\ 30.5 (3) \\ -85.2 (4) \\ 2 \\ 152.3 (5) \\ 29 (5) \\ \end{array} $ $ \begin{array}{l} m = 1 \\ 1.42 (3) \\ 1.38 (3) \\ 1.43 (3) \\ 1.42 (3) \\ 1.41 (3) \\ 1.41 (3) \\ 1.41 (3) \\ 1.41 (2) \\ \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $0_{2} - C_{5} - (C_{6} - C_{5} - (C_{6}$	C41 - C42 $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.43 (3)$ $1.43 (3)$ $1.44 (3)$ $1.44 (3)$	$ \begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \\ \end{array} \\ \begin{array}{l} m = 4 \\ 1.43 (3) \\ 1.45 (3) \\ 1.42 (3) \\ 1.41 (3) \\ 1.45 (3) \\ 1.39 (3) \\ 1.39 (3) \\ \end{array} $
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ (c) (2d)\\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm21 - Cm22\\ Cm22 - Cm23\\ Cm23 - Cm24\\ \end{array}$	$ \begin{array}{c} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \end{array} $	$c_{34} - c_{53} \\ c_{55} - c_{51} \\ c_{5} - c_{6} \\ c_{6} - c_{7} \\ c_{6} - c_{8} \\ 0_{2} - c_{5} - c_{6} \\ c_{6} - c_{7} \\ c_{6} - c_{8} \\ 0_{2} - c_{5} - c_{6} \\ c_{6} - c_{5} \\ c_{6} - c_{5} \\ c_{6} - c_{7} \\ $	C41 - C42 $C41 - C42$ $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.42 (3)$ $1.40 (3)$ $1.43 (3)$ $1.44 (3)$ $1.42 (3)$ $1.42 (3)$	$ \begin{array}{l} 1.421 (10) \\ 1.393 (6) \\ 1.558 (4) \\ 1.528 (5) \\ 1.517 (5) \\ \hline 30.0 (3) \\ -85.4 (4) \\ 2 \\ 151.4 (5) \\ 36 (5) \\ \hline m = 4 \\ 1.43 (3) \\ 1.45 (3) \\ 1.45 (3) \\ 1.41 (3) \\ 1.45 (3) \\ 1.39 (3) \\ 1.44 (3) \\ 1.29 (3) \\ 1.2$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ \hline 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ \hline (c) (2d)\\ \hline Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm21 - Cm22\\ Cm22 - Cm23\\ Cm23 - Cm24\\ Cm24 - Cm25\\ \hline \end{array}$	$ \begin{array}{c} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $O_{2} - C_{5} - C_{6}$ $C_{61} - C_{5} - C_{6}$ $H_{02} - O_{2} - C_{61}$ $m = 2$ $I.42 (3)$ $I.43 (3)$ $I.40 (3)$ $I.43 (3$	C41 - C42 $C41 - C42$ $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.42 (3)$ $1.42 (3)$ $1.43 (3)$ $1.44 (3)$ $1.42 (3)$ $1.39 (3)$ $1.41 (3)$	$ \begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.528 \ (5) \\ 1.517 \ (5) \\ \hline 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \\ 151.4 \ (5) \\ 36 \ (5) \\ \hline m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.39 \ (3) \\ 1.44 \ (3) \\ 1.38 \ (3) \\ 1.45 \ (3) \$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ (c) (2d)\\ \hline\\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm21 - Cm22\\ Cm22 - Cm23\\ Cm23 - Cm24\\ Cm24 - Cm25\\ Cm25 - Cm21\\ \end{array}$	$ \begin{array}{c} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.513 \ (5) \\ \hline \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.41 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \ (3$	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $0_{2} - C_{5} - (C_{6} - C_{5} - (C_{6}$	$\begin{aligned} C41 - C42 \\ C41 - C42 \\ C41 - C42 \\ C41 - C42 \\ C5 - C41 \\ \\ 1.42 \\ (3) \\ 1.42 \\ (3) \\ 1.44 \\ (3) \\ 1.44 \\ (3) \\ 1.42 \\ (3) \\ 1.39 \\ (3) \\ 1.41 \\ (3) \end{aligned}$	$ \begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.528 \ (5) \\ 1.517 \ (5) \\ \hline 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \hline m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.38 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.44 \ (3) \\ 1.38 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \ (3$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ (c) (2d)\\ \hline\\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm21 - Cm22\\ Cm22 - Cm23\\ Cm23 - Cm24\\ Cm24 - Cm25\\ Cm25 - Cm21\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm15\\ Cm15 - Cm11\\ \hline\\ Cm25 - Cm21\\ \hline\\ Cm24 - Cm25\\ Cm25 - Cm21\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm25\\ \hline\\ Cm25 - Cm21\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm25\\ \hline\\ Cm24 - Cm25\\ \hline\\ Cm24 - Cm25\\ \hline\\ Cm24 - Cm21\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm12\\ \hline\\ Cm14 - Cm25\\ \hline\\$	$ \begin{array}{c} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.38 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.36 \ (3) \\ 1.54 \ (2) \\ \hline \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $0_{2} - C_{5} - (C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - C_{5} - C_{6} - C_{7} - C$	C41 - C42 $241 - C42$ $C41 - C42$ $cC4 - C42$ $r = 3$ $1.42 (3)$ $1.43 (3)$ $1.43 (3)$ $1.44 (3)$ $1.42 (3)$ $1.41 (3)$ $1.41 (3)$	1.421 (10) 1.393 (6) 1.558 (4) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4) 2 151.4 (5) 36 (5) m = 4 1.43 (3) 1.45 (3) 1.42 (3) 1.42 (3) 1.44 (3) 1.38 (3) 1.45 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.45 (3) 1.45 (3) 1.44 (3) 1.45 (
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ \hline 01 - C1 - C11 - C12\\ C2 - C4\\ \hline 01 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ \hline C11 - C12 - C11\\ \hline 01 - O1 - C1 - C11\\ \hline 01 - O1 - C1 - C11\\ \hline 01 - C1 - C12\\ \hline C11 - C12\\ \hline C12 - C12 - C12 $	$ \begin{array}{c} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.36 \ (3) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ \end{array} $	$\begin{array}{l} C_{34} - C_{53} \\ C_{55} - C_{51} \\ C_{5} - C_{6} \\ C_{6} - C_{7} \\ C_{6} - C_{8} \\ 0_{2} - C_{5} - (C_{6} - C_{5} - C_{6} \\ C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} \\ C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} \\ H_{02} - 0_{2} \\ H_{02} - (C_{6} - C_{5} - C_{6} \\ H_{02} - (C_{6} - C_{5} - C_{6} \\ H_{02} - (C_{6} - C_{5} - C_{6} \\ H_{02} - (C_{6} - C_{6} - C_{6} - C_{6} \\ H_{02} - (C_{6} - C_{6} - C_{6} - C_{6} \\ H_{02} - (C_{6} - C_{6} - C_{6} - C_{6} \\ H_{02} - (C_{6} - C_{6} - C_{6} - C_{6} \\ H_{02} - (C_{6} - C_{6} - C_{6} - C_{6} \\ H_{02} - (C$	C41 - C42 $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.45 (3)$ $1.42 (3)$ $1.44 (3)$ $1.44 (3)$ $1.42 (3)$ $1.42 (3)$ $1.41 (3)$ $1.57 (2)$	1.421 (10) 1.393 (6) 1.558 (4) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4) 2 151.4 (5) 36 (5) m = 4 1.43 (3) 1.45 (3) 1.42 (3) 1.45 (3) 1.44 (3) 1.38 (3) 1.45 (3) 1.41 (3) 1.45 (3) 1.41 (3) 1.55 (2) .55 (2) .55 (2)
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ \hline 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C11\\ \hline (c) (2d)\\ \hline Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm21 - Cm22\\ Cm23 - Cm24\\ Cm24 - Cm25\\ Cm25 - Cm21\\ \hline Cm1 - Cm11\\ Cm1 - Cm1\\ Cm1 - Cm1\\ \hline cm1 - Cm1$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.36 \ (3) \\ 1.54 \ (2) \ (2) \ $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $0_{2} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - C_{7} - C_{6} - C_{5} - C_{7} - C_$	C41 - C42 $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.43 (3)$ $1.44 (3)$ $1.44 (3)$ $1.44 (3)$ $1.41 (3)$ $1.41 (3)$ $1.57 (2)$ $1.55 (2)$ $1.41 (4)$	$ \begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.528 \ (5) \\ 1.517 \ (5) \\ \hline 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \hline m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.42 \ (3) \\ 1.44 \ (3) \\ 1.45 \ (3) \\ 1.44 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2) \$
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C11 - C12 \\ C12 - C11 \\ C12 - C11 \\ C12 - C13 \\ C13 - C14 \\ C14 - C15 \\ C15 - C11 \\ C12 - C12 \\ C12 - C$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline & m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.36 \ (3) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.57 \ (2) \\ \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $0_{2} - C_{5} - C_{6}$ $C_{6} - C_{7} - C_{6}$ C_{6}	C41 - C42 $C41 - C42$ $C41 - C42$ $C5 - C41$ $m = 3$ $1.42 (3)$ $1.43 (3)$ $1.44 (3)$ $1.42 (3)$ $1.44 (3)$ $1.42 (3)$ $1.41 (3)$ $1.57 (2)$ $1.55 (2)$ $1.41 (2)$ $1.54 (2)$	$\begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.528 \ (5) \\ 1.517 \ (5) \\ \hline 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \hline m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.42 \ (3) \\ 1.42 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2)$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - O1 - C1 - C11\\ (c) (2d)\\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm21 - Cm22\\ Cm22 - Cm23\\ Cm23 - Cm24\\ Cm24 - Cm25\\ Cm25 - Cm21\\ Cm1 - Cm11\\ Cm1 - Cm31\\ Cm1 - Cm1\\ Cm1 - Cm2\\ Cm2 - Cm3\\ \end{array}$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline & m = 1 \\ 1.42 \ (3) \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.44 \ (2) \\ 1.36 \ (3) \\ \hline & 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.55 \ (2) \\ \end{array} $	$ \begin{array}{l} c_{34} - c_{53} \\ c_{55} - c_{51} \\ c_{5} - c_{6} \\ c_{6} - c_{7} \\ c_{6} - c_{8} \\ 0_{2} - c_{5} - c_{6} \\ c_{6} - c_{7} \\ c_{6} - c_{8} \\ 0_{2} - c_{5} - c_{6} \\ c_{6} - c_{5} \\ c_{6} \\ c_$	$\begin{array}{l} C41 - C42\\ C41 - C42\\ C41 - C42\\ C5 - C41\\ m = 3\\ 1.42 \ (3)\\ 1.43 \ (3)\\ 1.44 \ (3)\\ 1.42 \ (3)\\ 1.42 \ (3)\\ 1.44 \ (3)\\ 1.41 \ (3)\\ 1.57 \ (2)\\ 1.55 \ (2)\\ 1.41 \ (2)\\ 1.55 \ (2)\\ 1.54 \ (2)\\ 1.58 \ (2)\\ \end{array}$	$\begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.528 \ (5) \\ 1.517 \ (5) \\ 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \end{array}$ $\begin{array}{c} m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.42 \ (3) \\ 1.45 \ (3) \\ 1.39 \ (3) \\ 1.45 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2) \\ 1.52 \ (2) \ ($
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C11 - C11 - C12 \\ C11 - C11 - C11 \\ \hline \\ (c) (2d) \\ \hline \\ Cm11 - Cm12 \\ Cm12 - Cm13 \\ Cm13 - Cm14 \\ Cm14 - Cm15 \\ Cm15 - Cm11 \\ Cm21 - Cm22 \\ Cm22 - Cm23 \\ Cm24 - Cm25 \\ Cm25 - Cm21 \\ \hline \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm2 \\ Cm2 - Cm3 \\ Cm2 - Cm4 \\ \hline \end{array}$	$ \begin{array}{c} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.513 \ (5) \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $O_{2} - C_{5} - C_{6}$ $C_{6} - C_{5} - C_{6}$ $H_{02} - O_{2} - H_{02} - O_{2} - H_{02}$ $m = 2$ $I.42 (3)$ $I.43 (3)$ $I.40 (3)$ $I.40 (3)$ $I.40 (3)$ $I.40 (3)$ $I.40 (3)$ $I.40 (3)$ $I.39 (3)$ $I.40 (3)$ $I.39 (3)$ $I.40 (3)$ $I.39 (3)$ $I.43 (2)$ $I.55 (2)$ $I.45 (2)$ $I.53 (2)$ $I.56 (2)$	$\begin{array}{l} C41 - C42\\ C41 - C42\\ C41 - C42\\ C5 - C41\\ \hline m = 3\\ 1.42 \ (3)\\ 1.45 \ (3)\\ 1.42 \ (3)\\ 1.42 \ (3)\\ 1.42 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.41 \ (3)\\ 1.55 \ (2)\\ 1.54 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\\ 1.58 \ (2)\\ 1.55 \ (2)\ (2)\ (2)\ (2)\ (2)\ (2)\ (2)\ (2$	$\begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.598 \ (4) \\ 1.558 \ (4) \\ 1.528 \ (5) \\ 1.517 \ (5) \\ \hline 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \\ 1.517 \ (5) \\ 36 \ (5) \\ \hline \\ m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.45 \ (3) \\ 1.44 \ (3) \\ 1.39 \ (3) \\ 1.44 \ (3) \\ 1.38 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.52 \ (2) \\ 1.53 \ (2)$
$\begin{array}{c} C24 - C25\\ C25 - C21\\ C1 - C2\\ C2 - C3\\ C2 - C4\\ 01 - C1 - C11 - C12\\ C2 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ C31 - C1 - C11 - C12\\ H01 - 01 - C1 - C1\\ H01 - 01 - C1 - C11\\ (c) (2d)\\ \hline\\ Cm11 - Cm12\\ Cm12 - Cm13\\ Cm13 - Cm14\\ Cm14 - Cm15\\ Cm15 - Cm11\\ Cm21 - Cm22\\ Cm22 - Cm23\\ Cm23 - Cm24\\ Cm24 - Cm25\\ Cm25 - Cm21\\ Cm1 - Cm11\\ Cm1 - Cm1\\ Cm1 - Cm31\\ Cm1 - Cm1\\ Cm1 - Cm2\\ Cm2 - Cm3\\ Cm2 - Cm3\\ Cm2 - Cm4\\ Cm2 - Cm5\\ \end{array}$	$ \begin{array}{c} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.513 \ (5) \\ \hline \\ 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.38 \ (3) \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.36 \ (3) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.52 \ (2) \\ \end{array} $	$C_{34} - C_{53}$ $C_{55} - C_{51}$ $C_{5} - C_{6}$ $C_{6} - C_{7}$ $C_{6} - C_{8}$ $0_{2} - C_{5} - (C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{5} - C_{6} - C_{5} - (C_{6} - C_{5} - C_{5} - C_{6} - C_{7} - C_{7} - C_{6} - C_{7} $	$\begin{array}{l} C41 - C42\\ C41 - C42\\ C41 - C42\\ C5 - C41\\ m = 3\\ 1.42 \ (3)\\ 1.45 \ (3)\\ 1.42 \ (3)\\ 1.42 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.55 \ (2)\\ 1.55 \ (2)\\ 1.55 \ (2)\\ 1.55 \ (2)\\ \end{array}$	$\begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.558 \ (5) \\ \hline \\ 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \hline \\ m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.42 \ (3) \\ 1.42 \ (3) \\ 1.44 \ (3) \\ 1.38 \ (3) \\ 1.44 \ (3) \\ 1.38 \ (3) \\ 1.44 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.52 \ (2) \\ 1.53 \ (2) \\ 1.54 \ (2) \\ \hline \end{array}$
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C31 - C1 - C1 - C1 \\ \hline \\ H01 - 01 - C1 - C1 \\ \hline \\ (c) (2d) \\ \hline \\ Cm11 - Cm12 \\ Cm13 - Cm14 \\ Cm14 - Cm15 \\ Cm15 - Cm11 \\ Cm21 - Cm22 \\ Cm22 - Cm23 \\ Cm24 - Cm25 \\ Cm25 - Cm21 \\ Cm1 - Cm11 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm2 - Cm3 \\ Cm2 - Cm3 \\ Cm2 - Cm4 \\ Cm2 - Cm5 \\ \hline \\ Om1 - Cm1 - Cm11 \\ \hline \\ Cm1 - Cm1 - Cm11 \\ \hline \\ Cm2 - Cm5 \\ \hline \\ Om1 - Cm1 - Cm11 \\ \hline \\ \end{array}$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.38 \ (3) \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.52 \ (2) \\ 1.52 \ (2) \\ -Cm12 \ -35 \ (4) \\ \end{array} $	$\begin{array}{c} \text{C34-C33}\\ \text{C35-C51}\\ \text{C55-C51}\\ \text{C5-C6}\\ \text{C6-C7}\\ \text{C6-C8}\\ 02-\text{C5-C6}\\ \text{C6-C5-C6}\\ \text{C61-C5-C}\\ \text{H02-O2-}\\ $	$\begin{array}{l} C41 - C42\\ 241 - C42\\ -C42\\ -C42\\ -C5 - C41\\ \hline m = 3\\ 1.42 \ (3)\\ 1.42 \ (3)\\ 1.43 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.41 \ (3)\\ 1.57 \ (2)\\ 1.55 \ (2)\\ -1.55 \ (2)\\ -35 \ (1)\\ \hline \end{array}$	1.421 (10) 1.393 (6) 1.558 (4) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4) 2 151.4 (5) 36 (5) m = 4 1.43 (3) 1.45 (3) 1.42 (3) 1.42 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.55 (2) 1.55 (2) 1.58 (2) 1.58 (2) 1.58 (2) 1.52 (2) 1.53 (2) 1.54 (2) 32 (1) 32 (1) 32 (1) 32 (1) 32 (1) 32 (1) 32 (1) 33 (3) 33 (1) 34 (2) 35 (2) 36 (2) 32 (1) 32 (1) 32 (1) 33 (2) 32 (1) 33 (2) 32 (1) 33 (2) 32 (1) 33 (2) 34 (2) 35 (
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ \hline \\ (c) (2d) \\ \hline \\ Cm11 - Cm12 \\ Cm12 - Cm13 \\ Cm13 - Cm14 \\ Cm14 - Cm15 \\ Cm15 - Cm11 \\ Cm21 - Cm22 \\ Cm22 - Cm23 \\ Cm24 - Cm25 \\ Cm25 - Cm21 \\ Cm1 - Cm11 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm3 \\ Cm2 - Cm3 \\ Cm2 - Cm3 \\ Cm2 - Cm4 \\ Cm2 - Cm5 \\ Om1 - Cm1 - Cm11 \\ \hline \\ \end{array}$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.553 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline \\ m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.41 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.52 \ (2) \\ 1.52 \ (2) \\ -Cm12 80 \ (\end{array} $	$\begin{array}{c} \text{C34-C33}\\ \text{C35-C51}\\ \text{C55-C51}\\ \text{C5-C6}\\ \text{C6-C7}\\ \text{C6-C7}\\ \text{C6-C8}\\ 02-\text{C5-(}\\ \text{C61-C5-(}\\ \text{H02-O2-)\\}\\ \text{H02-O2-\\}\\ $	$\begin{array}{l} C41 - C42\\ 241 - C42\\ -C42 - C42\\ -C42 - C5 - C41\\ m = 3\\ 1.42 \ (3)\\ 1.45 \ (3)\\ 1.43 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.41 \ (3)\\ 1.57 \ (2)\\ 1.55 \ (2)\\ 1.55 \ (2)\\ 1.55 \ (2)\\ -35 \ (1)\\ 84 \ (1)\\ \end{array}$	1.421 (10) 1.393 (6) 1.598 (4) 1.558 (4) 1.528 (5) 1.517 (5) 30.0 (3) -85.4 (4) 2 151.4 (5) 36 (5) m = 4 1.43 (3) 1.45 (3) 1.42 (3) 1.42 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.45 (3) 1.44 (3) 1.58 (2) 1.58 (2) 1.58 (2) 1.58 (2) 1.58 (2) 1.58 (2) 1.54 (2) 1.53 (2) 1.54 (2) 0 32 (1) -83 (1) -83 (1) .258 (2) .258 (2) .252 (2) .252 (2) .252 (2) .252 (2) .253 (2) .253 (2) .253 (2) .253 (2) .253 (2) .253 (2) .253 (2) .254 (2) .253 (2) .254 (2) .253 (2) .254 (2) .254 (2) .255 (2)
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ H01 - O1 - C1 - C11 \\ \hline \\ (c) (2d) \\ \hline \\ Cm11 - Cm12 \\ Cm12 - Cm13 \\ Cm13 - Cm14 \\ Cm14 - Cm15 \\ Cm15 - Cm11 \\ Cm23 - Cm24 \\ Cm24 - Cm25 \\ Cm24 - Cm25 \\ Cm25 - Cm21 \\ Cm1 - Cm11 \\ Cm1 - Cm1 \\ Cm1 - Cm3 \\ Cm2 - Cm3 \\ Cm2 - Cm4 \\ Cm2 - Cm5 \\ Om1 - Cm1 - Cm11 - \\ Cm31 - Cm1 - Cm11 - \\ \hline \end{array}$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.553 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline & m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.44 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.44 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.52 \ (2) \\ 1.52 \ (2) \\ -Cm12 \ -35 \ (6) \\ -Cm12 \ -153 \ (6) \ -153$	$\begin{array}{c} \text{C34-C33}\\ \text{C35-C51}\\ \text{C55-C51}\\ \text{C5-C6}\\ \text{C6-C7}\\ \text{C6-C8}\\ 02-\text{C5-C6}\\ \text{C6-C5-C6}\\ \text{C61-C5-C}\\ \text{H02-O2-C}\\ \text{H02-C}\\ \text{H02-C}$	$\begin{array}{l} C41 - C42\\ 241 - C42\\ -C42 - C42\\ -C42 - C42\\ -C5 - C41\\ m = 3\\ 1.42 (3)\\ 1.45 (3)\\ 1.43 (3)\\ 1.44 (3)\\ 1.44 (3)\\ 1.44 (3)\\ 1.44 (3)\\ 1.55 (2)\\ 1.55 (2)\\ 1.55 (2)\\ 1.55 (2)\\ -155 (2)\\ -35 (1)\\ -84 (1)\\ -154 (1$	$\begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.558 \ (5) \\ 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \end{array}$ $\begin{array}{c} m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.42 \ (3) \\ 1.42 \ (3) \\ 1.44 \ (3) \\ 1.45 \ (3) \\ 1.44 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.54 \ (2) \\ 1.58 \ (2) \\ 1.54 \ (2) \ $
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C1 - C11 - C12 \\ C1 - C11 - C12 \\ C1 - C11 - C11 \\ \hline \\ (c) (2d) \\ \hline \\ Cm11 - Cm12 \\ Cm12 - Cm13 \\ Cm13 - Cm14 \\ Cm14 - Cm15 \\ Cm15 - Cm11 \\ Cm21 - Cm22 \\ Cm22 - Cm23 \\ Cm23 - Cm24 \\ Cm24 - Cm25 \\ Cm25 - Cm21 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm2 - Cm3 \\ Cm2 - Cm4 \\ Cm2 - Cm5 \\ Om1 - Cm1 - Cm11 - \\ Cm2 - Cm1 - Cm11 - \\ Cm2 - Cm1 - Cm11 - \\ Cm2 - Cm1 - Cm11 - \\ Cm1 - Cm1 - Cm1 - \\ Cm1 - Cm1 - Cm1 - \\ Cm1 - Cm1 - Cm1 - \\ Cm1 - Cm1 - \\ Cm1 - \\ Cm1 - Cm1 - \\ C$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline & m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.44 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.36 \ (3) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.55 \ (2) \\ 1.52 \ (2) \\ 1.55 \ (2) \\ 1.52 \ (2) \\ 1.52 \ (2) \\ -Cm12 \ -35 \ (6) \\ -Cm12 \ -153 \ (6) \\ -253 \ -153 \ (6) \ -153 \ (6) \ -153 \ (6) \ -153 \ (6) \ -153 \ (6) \ -153 \ (6) \ -153 \ -$	$\begin{array}{l} \text{C34-C33}\\ \text{C35-C51}\\ \text{C55-C5}\\ \text{C55-C51}\\ \text{C5-C6}\\ \text{C6-C7}\\ \text{C6-C8}\\ 02-C5-(C6-C7)\\ \text{C61-C5-(C6-C7)\\ \text{H02-O2-(C6-C7)\\ \text$	$\begin{array}{l} C41 - C42\\ C41 - C42\\ C41 - C42\\ C41 - C42\\ C5 - C41\\ m = 3\\ 1.42 (3)\\ 1.45 (3)\\ 1.44 (3)\\ 1.44 (3)\\ 1.42 (3)\\ 1.44 (3)\\ 1.42 (3)\\ 1.41 (3)\\ 1.41 (3)\\ 1.57 (2)\\ 1.55 (2)\\ 1.55 (2)\\ 1.55 (2)\\ 1.55 (2)\\ 1.55 (2)\\ -35 (1)\\ 84 (1)\\ -154 (1)\\ -$	$\begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.528 \ (5) \\ 1.517 \ (5) \\ \hline 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \hline \end{array}$ $\begin{array}{c} m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.42 \ (3) \\ 1.42 \ (3) \\ 1.44 \ (3) \\ 1.45 \ (3) \\ 1.44 \ (3) \\ 1.45 \ (3) \\ 1.44 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.54 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.54 \ (2) \\ 1.58 \ (2) \\ 1.54 \ (2) \\ 1.58 \ (2) \\ 1.54 \ (2) \ ($
$\begin{array}{c} C24 - C25 \\ C25 - C21 \\ C1 - C2 \\ C2 - C3 \\ C2 - C4 \\ \hline \\ 01 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C31 - C1 - C11 - C12 \\ C1 - C11 - C12 \\ C1 - C11 - C12 \\ C1 - C11 - C11 \\ \hline \\ (c) (2d) \\ \hline \\ Cm11 - Cm12 \\ Cm12 - Cm13 \\ Cm13 - Cm14 \\ Cm14 - Cm15 \\ Cm15 - Cm11 \\ Cm15 - Cm11 \\ Cm2 - Cm23 \\ Cm23 - Cm24 \\ Cm24 - Cm25 \\ Cm25 - Cm21 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm1 - Cm1 \\ Cm2 - Cm3 \\ Cm2 - Cm3 \\ Cm2 - Cm4 \\ Cm2 - Cm5 \\ Om1 - Cm1 - Cm11 - \\ Cm2 - Cm1 - Cm11 - \\ Cm2 - Cm1 - Cm1 - \\ Cm1 - Cm1 - Cm1 - \\ Cm1 - Cm1 - Cm1 - \\ Cm1 - Cm2 - \\ Cm1 - Cm1 - \\ Cm1 - \\ Cm1 - Cm2 - \\ Cm1 - \\ Cm1 - \\ Cm2 - \\ Cm2 - \\ Cm2 - \\ Cm2 - \\ Cm1 - \\ Cm1 - \\ Cm1 - \\ Cm2 - \\ Cm1 - \\ Cm1 - \\ Cm2 - \\ Cm1 - \\ Cm1 - \\ Cm2 - \\ Cm2 - \\ Cm1 - \\ Cm1 - \\ Cm2 - \\ Cm2 - \\ Cm2 - \\ Cm2 - \\ Cm1 - \\ Cm1 - \\ Cm2 - \\ Cm2 - \\ Cm2 - \\ Cm1 - \\ Cm2 - \\ Cm2 - \\ Cm1 - \\ Cm2 - \\ Cm2 - \\ Cm1 - \\ Cm2 - \\ Cm1 - \\ Cm2 - \\ Cm1 - \\ Cm2 - \\ Cm2 - \\ Cm1 - \\ Cm2 - \\ Cm1 - \\ Cm2 - \\ Cm$	$ \begin{array}{r} 1.426 \ (11) \\ 1.409 \ (7) \\ 1.554 \ (4) \\ 1.553 \ (4) \\ 1.523 \ (4) \\ 1.513 \ (5) \\ \hline & 30.5 \ (3) \\ -85.2 \ (4) \\ 2 \ 152.3 \ (5) \\ 29 \ (5) \\ \hline & m = 1 \\ 1.42 \ (3) \\ 1.43 \ (3) \\ 1.43 \ (3) \\ 1.44 \ (3) \\ 1.41 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.44 \ (2) \\ 1.39 \ (3) \\ 1.40 \ (3) \\ 1.36 \ (3) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.54 \ (2) \\ 1.55 \ (2) \\ 1.55 \ (2) \\ 1.52 \ (2) \ (2$	$\begin{array}{c} \text{C34-C33}\\ \text{C35-C51}\\ \text{C55-C6}\\ \text{C6-C7}\\ \text{C6-C7}\\ \text{C6-C8}\\ 02-\text{C5-C6}\\ \text{C6}\\ \text{C6}\\ \text{C7-C6-C8}\\ 02-\text{C5-C6}\\ \text{C6}\\ \text{C6}\\ \text{C6}\\ \text{C7-C6-C8}\\ \text{C7-C8}\\ \text$	$\begin{array}{c} C41 - C42\\ 241 - C42\\ C41 - C42\\ C5 - C41\\ m = 3\\ 1.42 \ (3)\\ 1.45 \ (3)\\ 1.43 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.44 \ (3)\\ 1.41 \ (3)\\ 1.57 \ (2)\\ 1.55 \ (2)\\ 1.55 \ (2)\\ 1.55 \ (2)\\ -155 \ (1)\\ 84 \ (1)\\ -154 \ (1)\$	$\begin{array}{c} 1.421 \ (10) \\ 1.393 \ (6) \\ 1.558 \ (4) \\ 1.558 \ (4) \\ 1.558 \ (5) \\ 30.0 \ (3) \\ -85.4 \ (4) \\ 2 \ 151.4 \ (5) \\ 36 \ (5) \\ \end{array}$ $\begin{array}{c} m = 4 \\ 1.43 \ (3) \\ 1.45 \ (3) \\ 1.42 \ (3) \\ 1.42 \ (3) \\ 1.44 \ (3) \\ 1.45 \ (3) \\ 1.44 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.45 \ (3) \\ 1.41 \ (3) \\ 1.55 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.58 \ (2) \\ 1.54 \ (2) \\ 0 \ 32 \ (1) \\ 0 \ -83 \ (1) \\ 0 \ -83 \ (1) \\ 0 \ 177 \ (1) \\ 0 \ -64 \ (1) \end{array}$

Table 3 (cont.)

(d) (2g)			
C11-C12	1.424 (4)	C31-C32	1.428 (3)
C12-C13	1.418 (5)	C32—C33	1.420 (4)
C13-C14	1.402 (6)	C33—C34	1.412 (4)
C14-C15	1.418 (4)	C34—C35	1.422 (4)
C15-C11	1.425 (4)	C35—C31	1.424 (3)
C1-01	1.439 (3)	CÍ—C31	1.519 (3)
C21-C22	1.407 (5)	C41-C42	1.404 (6)
C22-C23	1.414 (6)	C42—C43	1.415 (6)
C23-C24	1.396 (5)	C43—C44	1.410 (5)
C24—C25	1.398 (5)	C44—C45	1.408 (5)
C25-C21	1.398 (4)	C45-C41	1.403 (5)
C1-C11	1.522 (3)	C1-C51	1.540 (3)
01	-C12 -43.1 (2)	01-C1-C31-	-C32 -52.1 (2)
C31-C1-C11-	-C12 75.0 (3)	C11-C1-C31	
C51-C1-C11-	-C12 -165.1 (4)	C51-C1-C31	-C32 67.1 (2)
H0-01-C21-	-C11 - 36(4)	H0-01-C1-	C31 -156 (4)

Symmetry codes: (i) $y, \frac{1}{2} - x, \frac{1}{4} + z$; (ii) $x, \frac{1}{2} - y, \frac{1}{2} - z$. Torsional angles are described as, for example, Cxn - Cpx - Cpy - Cyn, where *n* is an atom descriptor (typically n = 1-5) and x, y are ring descriptors: usually n = 1 or 2, but in 2c n = 1, 2, 4 or 5; in 2g, n = 1, 2, 3 or 4; in 2d, x = m1 or m2, where *m* is a molecule descriptor with m = 1, 2, 3 or 4.

Table 4. Significant intra- and intermolecular dimensions

	D	н	A	D—H	HA	D—A	D—H···A
(1a)	01	HO	O1 ⁱ	0.78 (5)	1.95 (5)	2.724 (3)	170 (4)
• •	01		C21			5.053 (4)	
	01		Fel			4.373 (3)	
(1f)	01	HO	01 ⁱⁱ	0.64 (6)	2.44 (6)	2.868 (8)	126 (7)
	01	HO	C21	0.64 (6)	3.06 (7)	3.548 (7)	135 (8)
	01	HO	Fe 1	0.64 (6)	3.09 (7)	3.498 (4)	124 (7)
(2b)	01	HO	C21	0.79 (3)	2.84 (3)	3.549 (3)	151 (3)
	01	HO	Fe1	0.79 (3)	3.03 (3)	3.544 (2)	124 (3)
	01		O1 ⁱⁱⁱ			4.999 (4)	
(2c)	01	H01	C21	0.81 (4)	3.12 (4)	3.745 (5)	136 (2)
•	01	H01	Fel	0.81 (4)	3.04 (3)	3.588 (2)	127 (3)
	01		O2 ^{iv}			5.811 (3)	• •
	02	H02	C51	0.72 (4)	3.23 (4)	3.804 (5)	139 (4)
	O2	H02	Fe2	0.72 (4)	3.17 (4)	3.615 (2)	122 (4)
	O2		01 ^v			5.811 (3)	
(2d)	011		C121			3.58 (2)	
	011		Fel			3.49 (1)	
	O21		C221			3.64 (2)	
	O21		Fe2			3.53 (1)	
	031		C321			3.60 (2)	
	031		Fe3			3.51 (1)	
	041		C241			3.61 (2)	
	041		Fe4			3.52 (1)	
(2f)	01	H0a	C15	0.90	2.59	2.882 (6)	100
	01	H0 <i>b</i>	C21	0.90	2.75	3.549 (6)	148
	01	H0b	Fe1	0.90	3.13	3.539 (3)	110
	01	H0c	C42	0.90	2.51	3.093 (5)	123
	01		01 ^{vi}			5.889 (2)	
2(g)	01	HO	O1 ⁱⁱⁱ	0.66 (3)	2.61 (3)	2.926 (4)	111 (3)
	01	HO	C21	0.66 (3)	2.86 (3)	3.484 (4)	159 (4)
	01	HO	Fel	0.66 (3)	3.11 (3)	3.545 (2)	127 (3)
					_	_	

Symmetry codes (i) $y, \frac{1}{2} - x, \frac{1}{4} + z$; (ii) $x, \frac{1}{2} - y, \frac{1}{2} - z$; (iii) -x, -y, -z; (iv) $-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$; (v) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$; (vi) x, 1 + y, z.

dimers containing $O - H \cdots O$ hydrogen bonds: clearly, IR data are of limited value for the elucidation of solidstate aggregation patterns in compounds of this type.

The formation by (1f) of dimers having C_2 symmetry may be contrasted with the formation of extended chains by both (1d) (Li, Ferguson, Glidewell & Zakaria, 1994) and (1e) (Ferguson, Gallagher, Glidewell & Zakaria, 1994b) and with the formation of centrosymmetric dimers by (2e) (Ferguson, Gallagher, Glidewell & Zakaria, 1993b). Although the closed (OH)₂ motif is unknown in simple unfunctionalized organic alcohols, C_nH_mOH , and has been described as 'highly improbable' (Brock & Duncan 1994), this motif is found not only in (1f) but also in (2e), (2g) (see below), [(C_5H_5)Fe(C_5H_4)]₂C(OH)CMe₃ (Sharma, Cervantes-Lee & Pannell, 1992) and ferrocenyl(2-furyl)phenylmethanol (Ferguson, Glidewell, Opromolla, Zakaria & Zanello,

Fig. 1. View of the molecule of 1-ferrocenylethanol (1a) showing the atom-labelling scheme. Thermal ellipsoids are drawn at the 30% level for non-H atoms; H atoms are shown as small spheres of arbitrary size.

Fig. 2. View of the hydrogen bonding in (1a), viewed along the 4_1 screw axis, showing the C(2) motif.

1995): thus, although unknown in purely organic alcohols, this motif is actually rather common in α ferrocenyl alcohols. The molecular volume of (1*f*), 360.4 (5) Å³, is significantly larger than that, 352.5 (1) Å³, of the isomeric compound (2*a*) (Ferguson, Gallagher, Glidewell & Zakaria, 1993*b*).

Crystals of (2g) are monoclinic, space group P1, with one molecule in the asymmetric unit (Fig. 4). Pairs of molecules are thus related by a centre of inversion (Fig. 5), with an intermolecular O...O distance of 2.926 (4) Å, within the range observed for weak hydrogen bonds. However, the hydroxyl H atoms, as well as participating in (OH)₂ hydrogen bonding as the related observed both in compound $[(C_5H_5)Fe(C_5H_4)]_2C(OH)CMe_3$ (Sharma, Cervantes-Lee & Pannell, 1992) and in (1f) and (2e), form intramolecular O—H··· π (C₅H₅) interactions involving, as in (1f), an unsubstituted cyclopentadienyl ring from one of the ferrocenyl groups where the shortest intramolecular disance, O. · · C21, is 3.484 (4) Å.

3.2. Structures showing no $O - H \cdots O$ hydrogen bonding

Along with (2a) (Ferguson, Gallagher, Glidewell & Zakaria, 1993b), the structures of (2b)–(2d) complete the series FdCPh(OH)CH_{3-x}(CH₃)_x (x = 0-3), all of which are monomeric in the solid state. The racemic forms of (2b) and (2c) both crystallize in the monoclinic system, (2b) in the centrosymmetric space group $P2_1/c$ with one molecule in the asymmetric unit (Fig. 6) and (2c) in the non-centrosymmetric space group Cc, with two molecules per asymmetric unit (Fig. 7). In these crystals, the equal numbers of molecules of R and S configurations are accommodated by the centre of inversion and the glide plane, respectively. In (2c), the two independent molecules have the same chirality and virtually identical

Fig. 3. View of the dimeric aggregate of 1-ferrocenyl-2-phenylethanol (1f), showing the $R_2^2(4)$ motif; atoms are depicted as in Fig. 1.

dimensions and conformations: nonetheless, there is no inversion centre present and indeed the structure could not be solved in the centrosymmetric space group C2/c. The structures of (2b) and (2c) show a number of features in common, both with each other and with (2a)(Ferguson, Gallagher, Glidewell & Zakaria, 1993b). There is no O—H···O hydrogen bonding in 2(a)–(c), despite the fact that the steric demands about the unique central C1 atom are probably less in this series than in (2e), which forms centrosymmetric dimers held together by $O - H \cdot \cdot O$ hydrogen bonds (Ferguson, Gallagher, Glidewell & Zakaria, 1993b); the closest intermolecular $O \cdots O$ distances are: in (2a), 3.768 (3) Å; in (2b), 4.999 (4) Å; in (2c), 5.811 (3) Å, in every case precluding the formation of $O - H \cdots O$ hydrogen bonds. In each of (2a)-(c), the hydroxyl H atom instead points towards the π -system of the unsubstituted cyclopentadienyl ring. The closest $O \cdots C$ distances are: in (2a), 3.487 (3); in (2b), 3.549 (3); in (2c), 3.745 (5) and 3.804 (5) Å in the two independent molecules, associated with apparent

Fig. 4. View of the molecule of diferrocenyl(phenyl)methanol (2g); atoms are depicted as in Fig. 1. The $R_2^2(4)$ motif contains the O atoms of the molecules at (x, y, z) and (-x, -y, -z) and their associated H atoms: the S(7) motif contains the atoms C21, Fe1, C12, C11, C1, O1 and the hydroxyl H atom.

Fig. 5. View of the unit-cell contents of (2g), viewed along the *a* direction.

(O)H...Fe distances of 2.98 (3) Å in (2a); 3.03 (3) in (2b); 3.04 (4) and 3.17 (4) Å in (2c). The corresponding O...Fe distances are: in (2a), 3.464 (3); in (2b), 3.544 (2); and in (2c), 3.588 (2) and 3.615 (2) Å.

The racemic form of (2d) crystallizes in the centrosymmetric monoclinic space group $P2_1/n$, which can accommodate equal numbers of molecules having R and S configurations. There are four molecules in the asymmetric unit (Fig. 8), labelled in Tables 2-4 as n = 1-4; of these, the molecules labelled n - 1 and 3 are of opposite chirality from those labelled n = 2 and 4, so that the asymmetric unit itself accommodates the racemic nature of (2d). In view of the unusual cell dimensions

Fig. 6. View of the molecule of 1-ferrocenyl-1-phenylpropan-1-ol (2b); atoms are depicted as in Fig. 1.

Fig. 7. View of one of the two independent molecules of 1-ferrocenyl-1phenyl-2-methylpropan-1-ol (2c); atoms are depicted as in Fig. 1.

and the large asymmetric unit containing both enantiomers, a careful search for possible missing symmetry elements was made, once the refinement was complete, using both NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989) and PLATON (Spek, 1994) routines, but none was found: no alternative unit cell could be found, and the Laue group was confirmed as 2/m. The arrangement of the molecules in the unit cell (Fig. 9) gives rise to four groups, each of four molecules whose Fe atoms have their z-coordinates within ± 0.031 of 0.000, 0.250, 0.500 and 0.750, respectively: this arrangement and the large scattering power of the iron atoms are together responsible for the effective absence of the 001 reflections, except when 1 = 4n. There is no intermolecular aggregation; although the hydroxyl H atoms could not be located, the shortest intermolecular $O \cdots O$ distance of 5.85 (2) Å precludes any $O - H \cdots O$ hydrogen bonding; however, the $On1 \cdot \cdot \cdot Cn21$ distances, in the range 3.58 (2)-3.64 (2) Å, do not rule out the possibility of intramolecular O-H··· π (C₅H₅) interactions. The related molecule (1d) forms spiral chains, around a 21 screw axis (Li, Ferguson, Glidewell & Zakaria, 1994), but with the R and S enantiomers disordered within the chain so that any $O - H \cdot \cdot O$ hydrogen bonding probably arises adventitiously within a structure dominated by the packing of the large organic substituents. In (2d), there are three organic substituents around the central stereogenic C atom, having different steric demands: the ferrocenvl, phenvl and t-butyl groups are, respectively, approximately cylindrical, discoid and spherical and these substituents effectively shield the hydroxyl groups from contact with other molecules and, presumably, dominate the molecular packing. Within the

series FcCPh(OH)CH_{3-x}(CH₃)_x (x = 0-3), the effective molecular volumes are 352.5 (1), 393.0 (5), 412.3 (7) and 431 (3) Å³ for x = 0-3, respectively.

Racemic (2f) crystallizes in the centrosymmetric space group C2/c, containing equal numbers of R and S molecules in the unit cell. The structure consists of isolated monomers (Fig. 10), in which the hydroxyl H atom is disordered over three sites, with site occupation factors estimated from difference maps as 0.19, 0.35 and 0.46, respectively. Each of these hydrogen sites is *trans* to one of the C-C bonds involving C1, so that there is perfect staggering about the C1-O1 bond: since the three organic substituents bonded to C1 are all different (phenyl, benzyl, ferrocenyl), equal population of the three hydroxyl hydrogen sites is not to be expected. Similar perfect staggering of disordered hydroxyl tribenzylmethanol, hydrogen sites occurs in (PhCH₂)₃COH (Ferguson, Gallagher, Glidewell & Zakaria, 1993a), where the molecules, although lying in general positions, exhibit approximate threefold rotational symmetry and the disordered sites are again unequally populated. In each of its three sites the hydroxyl H atom in (2f) forms a close contact with a carbon of one of the aromatic systems (Fig. 10 and Table 4); H0a and H0b are engaged in $O - H \cdot \cdot \pi(C_5R_5)$ interactions, with the substituted and unsubstituted cyclopentadienyl groups, respectively, while H0c is involved in an $O - H \cdot \cdot \pi$ (arene) interaction with the

Fig. 8. Views of the four independent molecules of 1-ferrocenyl-1phenyl-2,2-dimethylpropan-1-ol (2d).

Fig. 9. Stereoview of the unit-cell contents of (2d).

benzyl group. The monomeric nature of (2f), when compared with the dimeric (2e), is consistent with the increased steric hindrance arising from a benzyl group, compared with a phenyl group, which we have noted previously (Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995; Glidewell & Lightfoot, 1995).

3.3. Molecular dimensions and conformations

Because of the comparatively low precision of the refined values of the bond lengths and angles in (2d), these values are excluded from the following discussion of the metrical data. Within the molecular units, the C-C bond lengths in the cyclopentadienyl rings range from 1.352 (6) to 1.426 (11) Å (both in 2c) in the unsubstituted rings and from 1.402(7) in (1f) and 1.402 (6) in (2g) to 1.432 (4) Å in (2c) in the substituted rings: nevertheless, there is a clear pattern, consistently observed, that the mean C-C distance is always greater in the substituted than in the unsubstituted ring (Table 3). The C-O bond lengths are all very similar, ranging only from 1.431 (3) Å in one of the independent molecules in (2c) to 1.439 (3) Å in the other molecule of (2c) and in (2g): there is no trend of increasing C—O bond length with increasing steric congestion around C1, as found for example in compounds of the type RCPh₂OH (Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995).

The remaining intramolecular bonded distances are typical of their types, with no significant deviations outside the ranges defined by the upper and lower quartile values (Allen, Kennard, Watson, Brammer, Orpen & Taylor, 1987; Orpen, Brammer, Allen, Kennard, Watson & Taylor, 1989). The orientation of the two cyclopentadienyl rings of each ferrocene fragment always deviates slightly from precisely parallel: the angle between the C_5 planes varies from 1.2 (3) in

Fig. 10. View of the molecule of 1-ferrocenyl-1,2-diphenylethanol (2f); atoms are depicted as in Fig. 1.

(2f) to 4.5 (2)° in (1f). The ring conformation of the ferrocenyl units, as defined by the mean value of the torsion angles Cxn-Cpx-Cpy-Cyn (where Cp represents the centroid of a cyclopentadienyl ring and x,y are ring descriptors), is always close to eclipsed (Table 3); a value of zero for such a torsion angle corresponds to complete eclipsing of the rings, while complete staggering of the rings is characterized by a torsion angle of 36°.

3.4. Hydrogen-bonding motifs

The hydrogen-bond motif in (1a) has graph set C(2)(Etter, 1990, 1991; Etter, MacDonald & Bernstein, 1990; Bernstein, Davis, Shimoni & Chang, 1995), as generally found in alcohols forming chains or helices (Brock & Duncan, 1994), and the $O \cdots O$ distance is 2.724(3)Å. The $O \cdot \cdot O$ distance in (1a) is significantly shorter than the values found in other chain-forming ferrocenyl alcohols, e.g. 2.802 (11) Å observed in (1d) (Li, Ferguson, Glidewell & Zakaria, 1994), and the two independent values of 3.059 (2) and 3.150 (2) Å found in (1e) (Ferguson, Gallagher, Glidewell & Zakaria, 1994b): the hydrogen bonds in (1d) and (1e) are both to be regarded as weak (Novak, 1974; Emsley, 1980), while the $O \cdots O$ distance in (1a) represents hydrogen bonds of intermediate strength in the Emsley and Novak classifications. The cyclic dimer of (1f) lies across a crystallographic twofold axis and the graph set for the hydrogen-bonding motif is $R_2^2(4)$, with an $O \cdot \cdot O$ distance of 2.868 (8) Å. This distance is identical within experimental uncertainty to the distance of 2.876 (2) Å found (Ferguson, Gallagher, Glidewell & Zakaria, 1993b) in the centrosymmetric cyclic dimer of (2e), but much longer than the mean of 2.75 Å found in the cyclic dimer of $[(C_5H_5)Fe(C_5H_4)]_2C(OH)CMe_3$ (Sharma, Cervantes-Lee & Pannell, 1992), which is also centrosymmetric. In (2g) there are two hydrogen-bonding motifs. There is an intramolecular motif arising from the $O - H \cdot \cdot \pi(C_5H_5)$ interaction, and having graph set S(7): in addition, the molecules are linked into centrosymmetric pairs via O—H···O hydrogen bonds in an $R_2^2(4)$ motif, so that the overall motif is $R_2^2(4)[S(7)]$. The O···O distance within the dimer of (2g), 2.926 (4) Å, is as in (1f), much longer than that in the dimer of $[(C_5H_5)Fe(C_5H_4)]_2C(OH)CMe_3$: hence the hydrogen bonds in both (1f) and (2g) must be regarded as weak, while those in $[(C_5H_5)Fe(C_5H_4)]_2C(OH)CMe_3$ are of intermediate strength (Novak, 1974; Emsley, 1980).

The predominant hydrogen-bonding patterns in simple organic alcohols C_nH_mOH , aside from those showing no molecular aggregation, are (Brock & Duncan, 1994): cyclic tetramers and hexamers containing $R_4^4(8)$ and $R_6^6(12)$ rings, although we have recently reported both an $R_3^3(6)$ trimer (Ferguson, Carroll, Glidewell, Zakaria & Lough, 1995) and a tetrahedral tetramer (Ferguson, Gallager, Glidewell, Low & Scrimgeour, 1992); chains,

particularly those generated by 2_1 axes, and helices, including those generated by 4_1 axes; open dimers in which only one hydroxyl H atom per dimer unit is involved in an $O-H \cdots O$ interaction, while the other hydroxyl H atom plays no part in the hydrogen bonding. By contrast, in α -ferrocenyl alcohols, there are as yet no known examples containing $R_3^3(6)$, $R_4^4(8)$ or $R_6^6(12)$ rings; on the other hand, $R_2^2(4)$ dimers are commonly found. Five of the 13 structurally characterized α -ferrocenyl alcohols [1a, 1d, 1e, 1f, 2a-g] $[(C_5H_5)Fe(C_5H_4)]C(OH)CMe_3$ (Sharma, Cervantes-Lee & Pannell, 1992), and ferrocenyl(2-furyl)phenylmethanol (Ferguson, Glidewell, Opromolla, Zakaria & Zanello, (1995)] exhibit the $R_2^2(4)$ motif unknown for simple alcohols.

Compounds (2a)—(d) and (f), although notably not (2e) (Ferguson, Gallagher, Glidewell & Zakaria, 1993b), all crystallize as monomeric units without intermolecular aggregation. In each of (2a)—(c), there are intramolecular O—H··· $\pi(C_5H_5)$ interactions, with graph set S(6) in each case. In (2f) there are three different hydrogenbonding motifs, formed by the three different hydroxyl hydrogen sites (Fig. 10); the graph set for the motif containing H0a is S(5), while the graph sets for the two different motifs involving H0b and H0c are both S(6).

GF thanks NSERC (Canada) for Research Grants. CMZ thanks the Committee of Vice-Chancellors and Principals (UK) for financial support, and the University of Rajshahi, Bangladesh, for study leave.

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146–153.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.
- Baran, J., Kanters, J. A., Lutz, E. T. G., Van der Maas, J. H., Schouten, A. & Wierzejewska-Hnat, M. (1990). J. Mol. Struct. 222, 305–317.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. In the press.
- Brock, C. P. & Duncan, L. L. (1994). Chem. Mater. 6, 1307-1312.
- Brock, C. P. & Dunitz, J. D. (1994). Chem. Mater. 6, 1118– 1127.
- DesMarteau, D. D., Xu, Z.-Q. & Witz, M. (1992). J. Org. Chem. 57, 629-635.
- Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Ferguson, G., Carroll, C. D., Glidewell, C., Zakaria, C. M. & Lough, A. J. (1995). Acta Cryst. B51, 367–377.
- Ferguson, G., Gallagher, J. F., Glidewell, C., Low, J. N. & Scrimgeour, S. N. (1992). Acta Cryst. C48, 1272–1275.

- Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1993a). Acta Cryst. C49, 820-824.
- Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1993b). Acta Cryst. C49, 967–971.
- Ferguson, G., Gallager, J. F., Glidewell, C. & Zakaria, C. M. (1993c). J. Chem. Soc. Dalton Trans. pp. 3499–3506.
- Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1994a). Acta Cryst. C50, 70-73.
- Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1994b). J. Organomet. Chem. 464, 95-101.
- Ferguson, G., Glidewell, C., Opromolla, G., Zakaria, C. M. & Zanello, P. (1995). J. Organomet. Chem. Accepted for publication.
- Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1995). Unpublished work.
- Ferguson, G., Glidewell, C. & Zakaria, C. M. (1994). Acta Cryst. C50, 928–931.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Glidewell, C. & Lightfoot, P. (1995). J. Organomet. Chem. 484, 175-178.
- Glidewell, C., Ferguson, G., Lough, A. J. & Zakaria, C. M. (1994). J. Chem. Soc. Dalton Trans. pp. 1971-1982.
- Gupta, M. P. & Gupta, T. N. P. (1975). Acta Cryst. B31, 7-9.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karlsson, R. (1976). Acta Cryst. B32, 2609-2614.
- Li, Y., Ferguson, G., Glidewell, C. & Zakaria, C. M. (1994). Acta Cryst. C50, 857-861.
- McMillan, J. A., Paul, I. C., Caccamese, S. & Rinehart, K. L. (1976). Tetrahedron Lett. pp. 4219–4222
- Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Novak, A. (1974). Struct. Bonding, 18, 177-216.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & TAYLOR, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.
- Pauson, P. L. & Watts, W. E. (1962). J. Chem. Soc. pp. 3880– 3886.
- Schweizer, W. B., Dunitz, J. D., Pfund, R. A., Ramos Tombo, G. M. & Ganter, C. (1981). *Helv. Chim. Acta*, **64**, 2738– 2740.
- Sgarabotto, P., Ugozzoli, F., Sorriso, S. & Malarski, Z. (1988a). Acta Cryst. C44, 674–676.
- Sgarabotto, P., Ugozzoli, F., Sorriso, S. & Malarski, Z. (1988b) Acta Cryst. C44, 671-673.
- Sharma, H. K., Cervantes-Lee, F. & Pannell, K. H. (1992). J. Organomet. Chem. 438, 183-194.
- Shubina, E. S., Epstein, L. M., Kreindlin, A. Z., Fadeeva, S. S. & Rybinskaya, M. I. (1991). J. Organomet. Chem. 401, 145– 153.
- Shubina, E. S., Epstein, L. M., Timofeeva, T. V., Struchkov, Yu. T., Kreindlin, A. Z., Fadeeva, S. S. & Rybinskaya, M. I. (1991). J. Organomet. Chem. 401, 133-143.
- Spek, A. L. (1994). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
- Sultanov, B. Y., Shnulin, A. N. & Mamedov, K. S. (1985). Zh. Strukt. Khim. 26, 163–166.
- Taylor, R., Kennard, O. & Versichel, W. (1984). J. Am. Chem. Soc. 106, 244–248.
- Zimmerman, H. E. & Zuraw, M. J. (1989). J. Am. Chem. Soc. 111, 7974–7989.